PROGRAMMER'S
REFERENCE
VIANUAL
AGILENT ACQIRIS
INSTRUMENTS

Agilent Technologies

Manual Part Number
U1092-90002

Edition

I-RevA, February 2009

The information in this document is subject to change without notice and may not be construed in any way as a
commitment by Agilent Technologies, Inc. While Agilent makes every effort to ensure the accuracy and contents
of the document it assumes no responsibility for any errors that may appear.

All software described in the document is furnished under license. The software may only be used and copied in
accordance with the terms of license. Instrumentation firmware is thoroughly tested and thought to be
functional but it is supplied “as is” with no warranty for specified performance. No responsibility is assumed for
the use or the reliability of software, firmware or any equipment that is not supplied by Agilent or its affiliated
companies.

You can download the latest version of this manual from http://www.agilent.com/ by clicking on Manuals in the
Technical Support section and then entering a model number. You can also visit our web site at
http://www.agilent.com/find/acqiris. At Agilent we appreciate and encourage customer input. If you have a
suggestion related to the content of this manual or the presentation of information, please contact your local
Agilent Acqiris product line representative or the dedicated Agilent Acqiris Technical Support
(ACQIRIS_SUPPORT@agilent.com).

Acqiris Product Line Information

USA (800) 829-4444
Asia - Pacific 61 3 9210 2890

Europe 41 (22) 884 32 90

© Copyright Agilent 2009

Programmer’s Reference Manual Page 2 of 222

http://www.agilent.com/
http://www.agilent.com/find/acqiris
mailto:ACQIRIS_SUPPORT@agilent.com

CONTENTS

1. INTRODUCTION 6
L1, MESSAZE 10 the USCT ..uvieuiieiiieiieciiecieeie ettt ettt ettt et e e e e sbe s aesteesteesbeesseesseessassaanseessanssessaeseenseessessnenens 6
1.2 USING thiS MANUALooiiiiiiiii ettt st et ettt e bt e sb e s beesbe et e enaesaeesae 6
1.3, Conventions Used in This ManUal...........ccccciiiiiieiiieiieecieseee ettt st et 7
1.4, Warning Regarding MediCal USE.........cccocueriiriieiiieiieiesiieieeie ettt ettt sttt eetesseasseenseenseenseensesnnenees 7
L T N 3 & ¢ 01 2SSOSR 7
1.6. Warranty and Repair Return Procedure, Assistance and SUPPOTtccooeiiririeiieieneie e 7
I 1 157 1 W AT 18130013 OSSP 7

2. DEVICE DRIVER FUNCTION REFERENCE 8
2.1. Status values and EITOT COES. ..ottt ettt ettt s nes 8
2.2, API Function ClasSifICatiONncc.eiuirieriiiirieieiieeese sttt sttt ettt bbbt ebe et eneenaens 11
2.3, API FUNCHION AESCIIPLIONS ...c.uvitiitiiiietieieeteette st esteesteetreeteeeteesseesbeesseessesseesseeseesseessesssesseeseesseessesssesssesses 15
231 F et o221 § o) 2 (< USSR 15
232 Acqrs_CaliDrateCaNCE]c.covuieiieiicieeeeee ettt ettt et e e et e st e ae e beenaeenneenee st eseenseens 16
233 ACOrS_CAlIDIATEEXiiiiiiieii ettt ettt et e e e et e e s b e e tbesteesae e beesbeenaeereesaeeseenreans 17
234 ACES CALLOAM ...ttt h ettt h et aeen e st et e teebeeae bt eneent et et nes 19
235 AcQrs_CAIREQUITEAeeeieiiee ettt ettt ettt et e e et e s st et e e teentesseesmeesneesneenseeneeans 21
2.3.6 ACOIS_CAISAVE....couiiiiieit ettt ettt e st e bt et e e st e e st et e et e en s e entesneeeaee st enseenneenteeneenteenreans 23
2.3.7 ALCOES_ClOSE . .viiutieitieie ettt ett ettt et e e e et et e et e e b e e et e s teesaeesbeesseesseassessaesseenseesseassesseeseenseesseessensseeseeseenraans 25
238 ACES CLOSEALL....e ettt ettt ettt et e e e e e bttt e bt e st es e e e et e beebe e bt eneenteneentenee 26
239 Acqrs_CONTIZLOZICIDIEVICE . .eeueieuiieiiieeieetiete ettt ettt et eat e st e et et e es e e st e s st e beeaeemaesneesseesaeenseenseans 27
2.3.10 ACGIS_EITOTIMESSAZEeeeuvvieutieeiieeiieenite ettt esite ettt estteebteesbtesbeeebte ettt estesabeeebteenbeesbeesabeeebeesaseesnbaesaseesn 29
2.3. 11 ACGES_GEIDEVTYPE .oeoueiieiieiiiieiie ettt ettt ettt ettt et ettt et e st e e tteeabt e e bte e beeetee e baeebeeenbee e teesnbeeebaeearee s 31
2312 Acqrs_getDevTyPeBYINACK .. cc.ciiiiiiiiiiie ittt ettt sttt ettt e naeas 32
2313 Acqrs_getInStrumentData...........ooiiiiiiiiie ettt ettt et et enteeneeeneas 33
2.3.14 Acqrs_getInStrumentIngoccveriieiiieieiie et ettt saeesaeenees 34
2.3.15 Acqrs_GEtNDICRANNEISccuveiiieiieiiciectecieeie ettt sttt ettt e et e ta e teesbeesbessaessaesseesseessesssesssesssenssesens 37
2.3.16 Acqrs GEtNDITNSIITUIMENLS ...cc.eeriiiitietiiiiite ittt ettt ettt st st esb e et et eat e e bt e st e beestesbeesbeenneas 38
2 T O N0 ¢~ V<) 43) o VSR TRSRURRS 39
T T N Ta | ¢ ¥ L SRS 40
2.3.19 Acqrs INItWIROPHONS ...ovieviiieiiecieete ettt ettt et et e e esteesteebeesbessaesseesseesseesseesseessesssenseessesssenssensens 41
2320 Acqrs_lOGICDEVICEIOcouiiiiiiiieiieeete ettt ettt st b e b e ettt st sae e bttt et eat e e bt nbeenaean 43
2321 ACQIS_ POWETSYSEEINL ...eeutieuiieiieeiieitieiteete et etesteestee bt enteeateeseesse e bt e seemaeemeesseesseenseenseenseeneenseenseenseeneesneannean 45
2.3.22 ACOES TESCL..uuiiiuiieeiieitie ettt e et e bt e et e st e et e e st e et e e sa bt e et e e e bt e e bt e eab e e e b e e eate e st e e e e beesabeeeabee s beeeabeesbaesanee s 46
2.3.23 ACQES_TESELIMEIMIOTY ..uvvieuiieeiieeiteeiteeniteetteetteeteeestteeteeeteessseessesnseeensseensaeensseensaeenssesnseeeseessseesnsaesnseenn 47
2324 Acqrs_1eSUMECONTIOLiiuiiiiiiitieiietiete ettt ettt ettt st sb e sb e et e et et e saeesbe et e emteenteeseesbeenaean 48
2.3.25 AcQrs_SCLALIIDULESIIING. ... ccueeitietieieee ettt ettt ettt ettt e e et e s st e s bt e bt eae et e eneesseeteenteeneeeneesneenean 49
2326 ACQIS_SCLLEDCOLOTii ittt ettt ettt e ste s saessaesseesseenseenseenseeseeseenseenseesaensaenean 50
2.3.27 Acqrs_SetSimulatioNOPLIONS.ccuveruierrierieeteetesteesteeteeteessestaesteesseessesssesseesseesseesseassesssesseesseessesssesssessens 51
2.3.28 Acqrs_SUSPENACONIIOLcc..iiiiiiiiiiietiee ettt ettt st st e sttt ettt s bt et e beeeteebeesbeenbeas 52
2.3.29 AcqrsD1_accumulateData..........cocueeiuieiieiie ettt ettt ettt ettt ettt e eneeeneennean 53
2330 AcQISD1 _aCGDONEottt ettt ettt ae ettt et e enteenteeneennean 55
2 TG B BN Ta ¢<1 B B B TeTe |11 (<R TUTRURS 56
2.3.32 ACQISD] _CQUITEEX c..viiuiieiiiciieiieieeie ettt ettt ettt e e s taeste e beesbeesaessaesaeesseenseenseesbeesbensaenean 57
2333 AcqrsD1 averaedDataooiiiuiiiiiiiiiie ettt et e bee b naean 58
2334 AcqrsD1_bestNOMINAISAMPLES.oiuiiiiiiiiiiieieriiee ettt sttt ettt e et eseeseeennean 61
2.3.35 AcqrsD1_bestSampIntervalc.occieieiieiienierieee ettt ettt eraeesaenneas 63
2.3.36 AcqrsD1_calibrate (DEPRECATED)cccociiiiiiiieiieiieeeciteteee ettt ve et essaesseesaesnaenees 65
2.3.37 AcqrsD1_calibrateEx (DEPRECATED).......cooiiiiiiiiiiiiieiteeeee ettt 66
2338 AcqrsD1 _close (DEPRECATED)......ccctiiiiieiieieet ettt sttt sttt et enteeneesneennean 68
2.3.39 AcqrsD1 _closeAll (DEPRECATED).......cccociiiieiieiteieeieetteieee ettt et enseenaeenaesseenneas 69
2.3.40 AcqrsD1 _configAVECONTIZccuveiieiiiieiiecieeste ettt ettt e st te e beesbessbesaaesseeseesbeesseesbensaeneas 70
2341 AcqrsD1 _config AvgConfiglnt32coouiiiiiiiieie et 75
2342 AcqrsD1_configAvgConfigRealOdc.ooiiiiiiiiiiee ettt 79
2.3.43 AcqrsD1_configChannelCombBINationccueeierieriieiiieie ettt ettt nseesaessaennees 81

Programmer’s Reference Manual

Page 3 of 222

2344 AcqrsD1 _configControllO.........coouiiiiiiiiieiiee ettt sttt et naeas 83

2.3.45 AcqrsD1 _CONIGEXICIOCKeiitiiiieiiee ettt ettt ettt et et et e eneesseeenean 86
2.3.46 AcqrsD1 _CONIGFCOUNLETcc.eiiiiiiiiecie sttt ettt et e ae s e e sae e seenseenseesseesaesseenneas 88
2.3.47 AcqrsD1_configHOTIZONALcc.eooviiiiiieiieie ettt st b e e e et e esbessaenneas 90
2.3.48 AcqrsD1 _configlLogicDevice (DEPRECATED)cocuiiiiiiiiieiieeeie et 92
2.3.49 AcqrsD1 _CONTIGIMEMOTYooiuiiiiieiieieiie ettt ettt ettt ettt b e bt e aeeeeeseeesaeeeaeeneeenseeneeeseesseennean 94
2.3.50 AcqrsD1 _configMEMOTYEXcciiiiieiiiiiieiiesiesieeit et ete ettt etesaestessee st enseenseensesseenseenseensesssesseensens 95
2.3.51 AcqrsD1 _CONTIGIMOME......c.uiiiiciiiiieiieie ettt ettt ettt et ssae e e aeesseesbeessesseeseenseesseessesssesens 97
2.3.52 AcqrsD1 configMUIINDULc.ooiiiiiiiiiee ettt sttt ettt et see e et eae 100
2.3.53 AcqrsD1 _CONTIGSEIUPATITAYeoouiiitieiiei ettt ettt ettt e e et e s bt e s bt e bt e teeneeenteeseesseeeeeneeens 102
2.3.54 AcqrsD1 _CONTIGTIIGCIASS. ...cueeiieiieiiieiietieie ettt et ettt e tte e e e e nsesnaesseesseesseenseensesnsesseenseensenns 104
2.3.55 AcqrsD1 _CONFIZTIIZSOUICE ...ocuvieiiiiiieiieiieiesieete sttt ettt ste e e ebe e b e esbessaesseesseesseessesssesseesseessesssenns 106
2.3.56 AcqrsD1 CONTIZTIIZTV ..ottt ettt be ettt st s aee b et enteeae 108
2.3.57 AcqrsD1 _CONTIGVEITICALccuieiiiiiitieiiee ettt ettt ettt et s e st e bt et eteeneeseeeeeeneeens 110
2.3.58 ACQISD1 _EITOTIMESSAZE. ... eeevieiiiiiiieeite ettt ettt ettt et sttt et st e et e st e et e sabe e sabeesabeesabeesabeesabeenanes 112
2.3.59 AcqrsD1 _errorMESSAZEEXcocuiiiiiiiiieciieete ettt sttt esabeennes 113
2.3.60 ACGISDT fOTCETTIZ .eouvieutieiieiieeiiet ettt ettt et satesb e sbe e bt e et e atesbeenbeeaeenteens 115
2.3.61 AcQISD1 fOTCETTIZEX ..cuuiiiiiiieiiiet ettt ettt ettt ettt et et e et e s st e saeenaeeeeenteeneesaeenseeneeens 116
2.3.62 AcCQISD1 fTEEBANK.......ccuieiieiieiieiecieee ettt st st re st enteenteeneenseenteenreens 118
2.3.63 AcCQISD1 getAVECONTIZ......iiiiiiiiiieiieieeee ettt ettt ettt et e et esbe et e ebeerbeeraesatesaeesaeenseenreens 119
2.3.64 AcqrsD1 getAvgConTigINt32cc.iiiiiiiiiiiieiet ettt sttt ea 121
2.3.65 AcqrsD1_getAvgConfigRealOqoouiiiiiiiiieee ettt 123
2.3.66 AcqrsD1_getChannelCoOmbINAtiONc.ecverieierieriertieieeeeeteseeesteeseetesaeseeesseesseenseesesseesseenseensenns 125
2.3.67 AcqrsD1 _getCONIOIIOccuieiieiieiieiecieeeese ettt ettt et be et e e b e esbe s st e ssa e seesseesseessessnesseesseenseessenns 127
2.3.68 AcqrsD1 gEtEXTCLOCKoouviiiiiiiiiie ettt ettt et st sttt et 129
2.3.69 AcCQISD1 GEFCOUNLETouiiiietieiieie ettt et ee sttt ettt e e s e st e e bt e beenteenteeseesneeseeenaeenneeneeens 131
2.3.70 AcqrsD1 gEtHOTIZONTALcoeeuiiiieiieieeie e sttt ettt ettt et eesae st e ssaeseenseensesnaesnnesseenseenseensenns 133
2.3.71 AcqrsD1_getlnstrumentData (DEPRECATED)cooiuiiiiiiiiieeiiecieeee ettt 135
2.3.72 AcqrsD1_getlnstrumentInfo (DEPRECATED)cccuoioiiiiiiiiiieieieeeee et 136
2373 ACQISD1 GEMEIMIOTYieuiieiieiiieiie ettt ettt ettt e es e s e b e bt et e e et s et e saeesae e eeeteeneenneeneenteens 139
2.3.74 AcqrsD1 _getMEMOTYEX ...cooiiiiiiiiiiiiiiie ettt ettt ettt ettt 141
2375 ACQISDI _ZEMOMEeiiieiieiieiceece sttt ettt ettt be et e et e e raesaeesae e beenbeereesreenneenreens 143
2.3.76 AcqrsD1 getMUIIINPULoocuiiiiiiiitiee ettt sttt ettt ettt et e b e b et eae 145
2.3.77 AcqrsD1_getNbrChannels (DEPRECATED)cooiiiiiiiiiieeee ettt 147
2.3.78 AcqrsD1_getNbrPhysicallnstruments (DEPRECATED)........cccccuvvieiiieiiieiecieseeeee e 148
2.3.79 AcCQISD1 GELSELUPATITAY ...eevurieeiieiiiieeite ettt et e st e st e st esabe e sttt e sabeessbeesabeessseesaseensseesasesnseenaseenses 149
2.3.80 AcCQISD1 GEETTIZCIASS . ..eeuieiiieiiet ettt ettt et et et s b e s bt e sbe e bt e et satesbeenbeeneeenteeas 151
2.3.81 AcCQISD1 GEETTIZSOUICE. ... eiouiieieiieiieie et ettt ettt ettt et et e et e e e et e saeesseesseeaaeeneeenteeneeseeenseeneeans 153
2.3.82 ACQISD1 _ELTTIGTV ..ottt ettt ettt et e e e saesseessa et e eseenseensesnnesneenseensennsenns 155
2.3.83 AcqrsD1_getVersion (DEPRECATED)cccioiiiiiiiiieiicieieeieeie ettt seesve b esvessnessaereens 157
2.3.84 AcqrSD1 gEEVEItICAL....c.oiiiiiiiiiiieee ettt st bt ne et et eae 158
2.3.85 AcqrsD1_init (DEPRECATED).....c.coiiieiiieiieteiee ettt sttt se e s s eneeneensenes 160
2.3.86 AcqrsD1_InitWithOptions (DEPRECATED).......cccoiiiiiiiiieeieeee et 161
2.3.87 AcqrsD1 _logicDevicelO (DEPRECATED)cocoiiiiiiiieiieieeeeietee ettt ens 163
2.3.88 AcqrsD1_ multilnsStrAUtODEING........c.coiiiieiieiieie ettt st seeste e e aesreesreeseenseens 165
2.3.89 AcqrsD1 multiInStrDEfINE.cc.oiuiriiiiiieieiiee ettt sttt n et 167
2390 AcqrsD1 multilnstrUndefIN@ALL..........cooiiiiiiiiiieiee ettt 169
2.3.91 AcQISD1 _PIrOCDONE.coiiiiiiieiiie ettt bttt st st st e st sat e s aneenans 171
2.3.92 AcQISD1 _ProCeSSDAta...cc.ueiiiieiiiiiiieeiie ettt ettt e et e e st e e nab e e st e e nabeesnbeennnas 172
2.3.93 AcOrSD1 T@AADALAccuiitiitieiieiiee ettt ettt e et b e a ettt ettt b et eneeneeneenes 174
2.3.94 AcqrsD1 r@adFCOUNTEToccuieeiitieitieie ettt ettt ettt ettt e e et e bt e steeaeeeeenteeneeseeenneeneeens 182
2.3.95 AcqrsD1_reportNbrACqUITEdSEZMENTSc.eeoviiierierieiieie et eetee et iesae et esaeeaeeaesneesseenseenseens 184
2.3.96 AcqrsD1_reset (DEPRECATED)ccccuiiiiiiiiieiiieeieecteeeeetee ettt ettt ettt st e st e snbeesnseennnes 186
2.3.97 AcqrsD1 resetDiItIZEIrIMEIMOTYcouiiuiiiiieiieiiteie ettt ettt sttt et e te st st e sbeesae e et et saeesaeeneeenteens 187
2.3.98 AcqrsD1 _restoreInternalREGISTETScc.eeiuiriuiiiieiieieieie ettt ettt et e ae et seeeseeenneeneeens 188

Programmer’s Reference Manual Page 4 of 222

2.3.99 AcqrsD1_setAttributeString (DEPRECATED)coouiiiiiiiiiiieeeeeeeee ettt 190

2.3.100 AcqrsD1_setLEDColor (DEPRECATED).......coiiiiiiiiiiectetee ettt 191
2.3.101 AcqrsD1_setSimulationOptions (DEPRECATED)cccooiieiiiiiiiiieceieeeeee e 192
2.3.102 ACQrSD1_StOPACGUISIEIONveevieitieerieetieiteetiesteesteeteeteseesteesseeseessesssesssesseessaesseessesssesseessesssesssesseesses 193
2.3.103 ACQISD1 StOPPIOCESSINE ..cnveintiiiiiiiieeiieiee ettt ettt sttt ettt ettt sb et e bt et e eeaesaeesaeesae 194
2.3.104 AcqrsD1_waitFOrEndOfACQUISTHIONccuiiiiiiieiie et 195
2.3.105 AcqrsD1_waitFOrENAOTPIOCESSINGeeveeiieeiieiieieeiesie sttt ettt ie e enaeseaessaesseesseenseenneens 197
2.3.106 ACGIST3 ACADONE. ... eiiiiieiiieeieeteete ettt et e et e st e et e st e st eesabeeeabeesabeesabeesnbeesabeebaeeareenns 199
2.3.107 ACOIST3 ACQUITE ...ttt ettt et st b et e bt e st ea e eb e e bt e bt es bt esbesseesbeenbeenaesaeesae 200
2.3.108 AcqrsT3 cONfigACGCONAITIONS.ccueetietieieeie ettt ettt ee ettt ettt s et e s bt e be e e eneesseesneeneeeneeene 201
2.3.109 AcqrsT3 confiZChaNNE]ccoeviiiiiieiieiieie ettt ettt entessaesseesseesesnneens 202
2.3.110 AcqrsT3 configloNtrOlOcocuiiiieiicieiieie ettt ettt st te et b e e b e staessa e saesseessessneeneenes 203
23.111 AcqrsT3 configMemOTySWILCHce.eiiiiiieiiie ettt 205
2.3.112 AcqrST3 CONTIZMOAR ...ttt ettt ettt et et eeste st e sseesneeneesneeeae 206
2.3.113 F e £l R T 101 (Tl I o VSRS 207
2.3.114 AcqrsST3 etACUONAILIONSecctieiieiiieiieetiesteete e eteeeese e teebeesaeeseesseesseesseesseessesssesseesseessesssesssenees 208
2.3.115 AcqrsT3 @etCRanNCl.........coiiiiiiiiii ettt sttt ettt et s 209
2.3.116 AcqrsT3 _ getCoNtIOIIO......couiiiiiieie ettt ettt ettt et ettt e bt e bt e beeateeneesneeees 210
2.3.117 AcqrsT3 getMEemMOTYSWILCHcoviiiieiieieeieee ettt et s e seenseenneees 211
2.3.118 ACOIST3 GEIIMOUE. ... ittt ettt ettt et e s te e beesbeesae s st e sse e seesseenseessesssessaesseesseessenssenes 212
2.3.119 ACQIST3 T€AADALA ..ottt et b ettt nae 213
2.3.120 AcqrsT3 1eadDatalnt32ooiiiiiiieiee e ettt et ene et e 216
2.3.121 AcqrsT3 1eadDataReEalOdcc.oouieiieiieie ettt ettt e s esneenne e ens 219
2.3.122 ACQrST3 StOPACHUISIEION.eeivietieiieitietteetiesteesteeteeteseesee e esseesaeeseesseesseesseenseessesssesssesseenseessesseesses 221
2.3.123 AcqrsT3 waitFOrENdOTACQUISTHONoouiiuiitieiieiieieee ettt 222

Programmer’s Reference Manual Page 5 of 222

1. Introduction

1.1. Message to the User

Congratulations on having purchased an Agilent Technologies Acqiris data conversion product. Acqiris Digitizers,
Averagers, Analyzers, and Time-to-Digital Converters are high-speed data acquisition modules designed for
capturing high frequency electronic signals. To get the most out of the products we recommend that you read the
accompanying product User Manual, the Programmer's Guide and this Programmer’s Reference Manual carefully.
We trust that the product you have purchased as well as the accompanying software will meet with your expectations
and provide you with a high quality solution to your data conversion applications.

1.2. Using this Manual

This guide assumes you are familiar with the operation of a personal computer (PC) running a Windows 2000/XP or
other supported operating system. In addition you ought to be familiar with the fundamentals of the programming
environment that you will be using to control your Acqiris product. It also assumes you have a basic understanding
of the principles of data acquisition using either, a waveform digitizer, a digital oscilloscope, or other similar
instrument.

The User Manual that you also have received (or have access to) has important and detailed instructions concerning
your Acqiris product. You should consult it first. You will find the following chapters there:

Chapter 1 OUT OF THE BOX, describes what to do when you first receive your new Acqiris product.
Special attention should be paid to sections on safety, packaging and product handling. Before
installing your product please ensure that your system configuration matches or exceeds the
requirements specified.

Chapter 2 INSTALLATION, covers all elements of installation and performance verification. Before
attempting to use your Acqiris product for actual measurements we strongly recommend that you
read all sections of this chapter.

Chapter 3 PRODUCT DESCRIPTION, provides a full description of all the functional elements of your
product.
Chapter 4 RUNNING THE ACQIRIS DEMONSTRATION APPLICATION, describes either

the operation of AcqirisLive 3.3, an application that enables basic operation of Acqiris
digitizers or averagers in a Windows 2000/XP environment;

the operation of SSR Demo and in the following chapter APx01 Demo, applications that
enable basic operation of Acqiris analyzers in a Windows 2000/XP environment;

the operation of the demonstration program that enables basic operation of Acqiris Time-
to-Digital Converters in a Windows 2000/XP environment;

the operation of Analyzer Demo, the demonstration program for the
SC240/AC240/SC210/AC210 from a PC running a Windows 2000/XP operating system.

Chapter 5 RUNNING THE GEOMAPPER APPLICATION, describes the purpose and operation of the
GeoMapper application which is needed for some AS bus Multi-instrument systems.

The Programmer’s Guide is divided into 3 separate sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how to use it.

Chapter 2 PROGRAMMING ENVIRONMENTS & GETTING STARTED, provides a description for
programming applications using a variety of software products and development environments.

Chapter 3 PROGRAMMING AN ACQIRIS INSTRUMENT, provides information on using the device driver

functions to operate an Acqiris instrument.
This Programmer’s Reference manual is divided into 2 sections.
Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how to use it.

Chapter 2 DEVICE DRIVER FUNCTION REFERENCE, contains a full device driver function reference.
This documents the traditional Application Program Interface (API) as it can be used in the
following environments:

LabWindowsCVI, LabVIEW, MATLAB MEX, Visual Basic, Visual Basic .NET, Visual C++.

Programmer’s Reference Manual Page 6 of 222

1.3. Conventions Used in This Manual

The following conventions are used in this manual:

This icon to the left of text warns that an important point must be observed.

WARNING Denotes a warning, which advises you of precautions to take to avoid being electrically shocked.

CAUTION Denotes a caution, which advises you of precautions to take to avoid electrical, mechanical, or
operational damages.

NOTE Denotes a note, which alerts you to important information.

Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in the text or a note

mono text is used for sections of code, programming examples and operating system commands.

Certain features are common to several different modules. For increased readability we have defined the following
families:

DC271-FAMILY DC135/DC140/DC211/DC211A/DC241/DC241A/
DC271/DC271A/DC271AR/DP214/DP235/DP240
AP-FAMILY AP240/AP235/AP100/AP101/AP200/AP201
12-bit-FAMILY DC440/DC438/DC436/DP310/DP308/DP306
10-bit-FAMILY DC122/DC152/DC222/DC252/DC282
U1071A-FAMILY all U1071A variants, DP1400, U1091AD28

1.4. Warning Regarding Medical Use

The Agilent Acqiris cards are not designed with components and testing procedures that would ensure a level of
reliability suitable for use in treatment and diagnosis of humans. Applications of these cards involving medical or
clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user. These cards are not intended to be a substitute for any form of established process or equipment used to
monitor or safeguard human health and safety in medical treatment.

WARNING: The modules discussed in this manual have not been designed for making direct measurements
on the human body. Users who connect an Acqiris module to a human body do so at their own
risk.

1.5. Warranty

Please refer to the appropriate User Manual.

1.6. Warranty and Repair Return Procedure, Assistance and Support

Please refer to the appropriate User Manual.

1.7. System Requirements

Please refer to the appropriate User Manual.

Programmer’s Reference Manual Page 7 of 222

2. Device Driver Function Reference

All function calls require the argument instrumentID in order to identify the Acqiris Instrument to which the call is
directed. The only exceptions are the initialization/termination functions:

e Acqrs_calibrate e Acqrs_calibrateEx e Acqrs_close

e Acqrs_closeAll e Acqrs_getNbrInstruments e Acqrs_init

o Acqrs_InitWithOptions e Acqrs_setSimulationOptions

e AcqrsD1_close e AcqrsD1_init e AcqrsD1_InitWithOptions

e AcqrsD1_getNbrPhysicallnstruments e AcqrsD1_multilnstrAutoDefine
e AcqrsD1_setSimulationOptions e AcqrsD1_multilnstrUndefineAll

The functions Acqrs_init, Acqrs_InitWithOptions, AcqrsD1_init, AcqrsD1_InitWithOptions, and
AcqrsD1_multilnstrDefine actually return instrument identifiers at initialization time, for subsequent use in the
other function calls.

2.1. Status values and Error codes

All function calls return a status value of type '"ViStatus' with information about the success or failure of the call. All
Acqiris specific values can be found in the header file AcqirisErrorCodes.h and are shown in Table 2-1. The
generic ones, defined by the VXIplug&play Systems Alliance, are listed in the header file vpptype.h (VXIplug&play
instrument driver header file, which includes visatype.h: fundamental VISA data types and macro definitions). They
are reproduced in Table 2-2 for convenience. The header file AcqirisD1Interface.h shows the common error codes
associated with each function.

Acqiris Error Codes Hex value Decimal value
ACQIRIS ERROR_FILE NOT _FOUND BFFA4800 -1074116608
ACQIRIS ERROR PATH NOT FOUND BFFA4801 -1074116607
ACQIRIS ERROR INVALID HANDLE BFFA4803 -1074116605
ACQIRIS ERROR_NOT SUPPORTED BFFA4805 | -1074116603
ACQIRIS ERROR INVALID WINDOWS PARAM BFFA4806 -1074116602
ACQIRIS ERROR_NO DATA BFFA4807 -1074116601
ACQIRIS ERROR NO ACCESS BFFA4808 -1074116600
ACQIRIS ERROR BUFFER OVERFLOW BFFA4809 -1074116599
ACQIRIS ERROR BUFFER NOT 64BITS ALIGNED BFFA480A | -1074116598
ACQIRIS ERROR BUFFER NOT 32BITS ALIGNED BFFA480B -1074116597
ACQIRIS ERROR CAL FILE CORRUPTED BFFA480C -1074116596
ACQIRIS ERROR_CAL FILE VERSION BFFA480D -1074116595
ACQIRIS ERROR CAL FILE SERIAL BFFA480E -1074116594
ACQIRIS_ ERROR_ALREADY_OPEN BFFA4840 -1074116544
ACQIRIS ERROR SETUP NOT AVAILABLE BFFA4880 -1074116480
ACQIRIS ERROR 10 WRITE BFFA48A0 -1074116448
ACQIRIS ERROR 10 _READ BFFA48A1 | -1074116447
ACQIRIS ERROR 10 DEVICE OFF BFFA48A2 -1074116446
ACQIRIS ERROR INTERNAL DEVICENO INVALID BFFA48CO -1074116416
ACQIRIS ERROR_TOO _MANY_ DEVICES BFFA48C1 -1074116415
ACQIRIS ERROR_EEPROM DATA INVALID BFFA48C2 -1074116414
ACQIRIS ERROR_INIT STRING INVALID BFFA48C3 -1074116413
ACQIRIS ERROR INSTRUMENT NOT FOUND BFFA48C4 | -1074116412
ACQIRIS ERROR INSTRUMENT RUNNING BFFA48C5 -1074116411
ACQIRIS ERROR INSTRUMENT STOPPED BFFA48C6 -1074116410
ACQIRIS ERROR MODULES NOT ON_SAME BUS BFFA48C7 -1074116409
ACQIRIS ERROR NOT ENOUGH DEVICES BFFA48C8 -1074116408
ACQIRIS ERROR NO MASTER DEVICE BFFA48C9 -1074116407
ACQIRIS ERROR PARAM STRING INVALID BFFA48CA -1074116406
ACQIRIS ERROR_ COULD NOT CALIBRATE BFFA48CB | -1074116405
ACQIRIS ERROR_CANNOT READ THIS CHANNEL BFFA48CC -1074116404
ACQIRIS ERROR PRETRIGGER STILL RUNNING BFFA48CD -1074116403
ACQIRIS ERROR CALIBRATION FAILED BFFA48CE -1074116402
ACQIRIS ERROR_ MODULES NOT CONTIGUOUS BFFA48CF -1074116401
ACQIRIS ERROR INSTRUMENT ACQ LOCKED BFFA48D0 -1074116400
ACQIRIS ERROR_INSTRUMENT ACQ NOT LOCKED BFFA48D1 -1074116399
ACQIRIS ERROR_EEPROM2 DATA INVALID BFFA48D2 -1074116398
ACQIRIS ERROR INSTRUMENT IN USE BFFA48D3 -1074116397
ACQIRIS ERROR _MEZZIO IN_USE BFFA48D4 | -1074116396

Programmer’s Reference Manual Page 8 of 222

Acqiris Error Codes Hex value Decimal value
ACQIRIS ERROR_MEZZIO ACQ_TIMEOUT BFFA48D5 -1074116395
ACQIRIS ERROR DEVICE ALREADY OPEN BFFA48D6 -1074116394
ACQIRIS ERROR_EEPROM CRC FAILED BFFA48D7 -1074116393
ACQIRIS ERROR INVALID GEOMAP FILE BFFA48EQ -1074116384
ACQIRIS ERROR_ACQ TIMEOUT BFFA4900 -1074116352
ACQIRIS ERROR_OVERLOAD BFFA4901 -1074116351
ACQIRIS ERROR PROC TIMEOUT BFFA4902 -1074116350
ACQIRIS ERROR_LOAD TIMEOUT BFFA4903 -1074116349
ACQIRIS ERROR_READ TIMEOUT BFFA4904 -1074116348
ACQIRIS ERROR_INTERRUPTED BFFA4905 -1074116347
ACQIRIS ERROR WAIT TIMEOUT BFFA4906 -1074116346
ACQIRIS ERROR_CLOCK_SOURCE BFFA4907 -1074116345
ACQIRIS ERROR_OPERATION CANCELLED BFFA4908 -1074116344
ACQIRIS ERROR_FIRMWARE NOT AUTHORIZED BFFA4A00 -1074116096
ACQIRIS ERROR FPGA 1 LOAD BFFA4AO1 -1074116095
ACQIRIS ERROR_FPGA 2 LOAD BFFA4AQ2 -1074116094
ACQIRIS ERROR FPGA 3 LOAD BFFA4A03 | -1074116093
ACQIRIS ERROR FPGA 4 LOAD BFFA4A04 | -1074116092
ACQIRIS ERROR FPGA 5 LOAD BFFA4A05 -1074116091
ACQIRIS ERROR_FPGA 6 LOAD BFFA4A06 -1074116090
ACQIRIS ERROR FPGA 7 LOAD BFFA4A07 | -1074116089
ACQIRIS ERROR FPGA 8 LOAD BFFA4A08 -1074116088
ACQIRIS ERROR FIRMWARE NOT SUPPORTED BFFA4A09 -1074116087
ACQIRIS ERROR_FPGA 1 FLASHLOAD NO _INIT BFFA4A10 -1074116080
ACQIRIS ERROR FPGA 1 FLASHLOAD NO DONE BFFA4A11 -1074116079
ACQIRIS ERROR FPGA 2 FLASHLOAD NO INIT BFFA4A12 -1074116078
ACQIRIS ERROR FPGA 2 FLASHLOAD NO DONE BFFA4A13 -1074116077
ACQIRIS ERROR SELFCHECK MEMORY BFFA4A20 -1074116064
ACQIRIS ERROR_SELFCHECK DAC BFFA4A21 -1074116063
ACQIRIS ERROR_SELFCHECK RAMP BFFA4A22 -1074116062
ACQIRIS ERROR SELFCHECK_PCIE LINK BFFA4A23 -1074116061
ACQIRIS ERROR SELFCHECK PCIE DEVICE BFFA4A24 -1074116060
ACQIRIS ERROR_FLASH ACCESS TIMEOUT BFFA4A30 -1074116048
ACQIRIS ERROR FLASH FAILURE BFFA4A31 -1074116047
ACQIRIS ERROR FLASH READ BFFA4A32 -1074116046
ACQIRIS ERROR_FLASH WRITE BFFA4A33 -1074116045
ACQIRIS ERROR_FLASH EMPTY BFFA4A34 -1074116044
ACQIRIS ERROR ATTR NOT FOUND BFFA4B00 -1074115840
ACQIRIS ERROR ATTR. WRONG TYPE BFFA4BO1 -1074115839
ACQIRIS ERROR_ATTR IS READ ONLY BFFA4B02 -1074115838
ACQIRIS ERROR ATTR IS WRITE ONLY BFFA4B03 | -1074115837
ACQIRIS ERROR_ATTR _ALREADY DEFINED BFFA4B04 -1074115836
ACQIRIS ERROR ATTR IS LOCKED BFFA4B05 -1074115835
ACQIRIS ERROR ATTR INVALID VALUE BFFA4B06 -1074115834
ACQIRIS ERROR_ATTR CALLBACK STATUS BFFA4BO7 -1074115833
ACQIRIS ERROR_ATTR CALLBACK EXCEPTION BFFA4B08 -1074115832
ACQIRIS ERROR KERNEL VERSION BFFA4C0O0 -1074115584
ACQIRIS_ ERROR_UNKNOWN_ERROR BFFA4C0O1 -1074115583
ACQIRIS ERROR OTHER WINDOWS ERROR BFFA4C02 -1074115582
ACQIRIS ERROR_VISA DLL NOT FOUND BFFA4C03 | -1074115581
ACQIRIS ERROR_ OUT OF MEMORY BFFA4C04 | -1074115580
ACQIRIS ERROR_UNSUPPORTED DEVICE BFFA4C05 -1074115579
ACQIRIS ERROR PARAMETERY BFFA4D09 -1074115319
ACQIRIS ERROR_PARAMETERI10 BFFA4DOA -1074115318
ACQIRIS ERROR_PARAMETERI1 BFFA4D0OB -1074115317
ACQIRIS ERROR_PARAMETERI12 BFFA4DOC -1074115316
ACQIRIS ERROR_PARAMETER13 BFFA4DOD -1074115315
ACQIRIS ERROR PARAMETER14 BFFA4DOE -1074115314
ACQIRIS_ ERROR_PARAMETERI15 BFFA4DOF -1074115313
ACQIRIS ERROR_NBR _SEG BFFA4D10 -1074115312
ACQIRIS ERROR_NBR _SAMPLE BFFA4D11 -1074115311
ACQIRIS ERROR DATA ARRAY BFFA4D12 -1074115310
ACQIRIS ERROR SEG DESC ARRAY BFFA4D13 -1074115309
ACQIRIS_ERROR_FIRST SEG BFFA4D14 -1074115308
ACQIRIS_ERROR_SEG_OFF BFFA4D15 -1074115307
ACQIRIS ERROR_FIRST SAMPLE BFFA4D16 -1074115306

Programmer’s Reference Manual Page 9 of 222

Acqiris Error Codes Hex value Decimal value
ACQIRIS ERROR_DATATYPE BFFA4D17 -1074115305
ACQIRIS ERROR_READMODE BFFA4D18 -1074115304
ACQIRIS ERROR VM FILE EXTENSION BFFA4D50 -1074115248
ACQIRIS_ ERROR_VM FILE _VERSION BFFA4D51 -1074115247
ACQIRIS ERROR_VM FILE READ BFFA4D52 | -1074115246
ACQIRIS ERROR VM FILE INVALID BFFA4D53 -1074115245
ACQIRIS ERROR_VM VERIFICATION BFFA4D54 -1074115244
ACQIRIS ERROR_ VM CRC BFFA4D55 | -1074115243
ACQIRIS ERROR_ HW FAILURE BFFA4D80 | -1074115200
ACQIRIS ERROR_HW_FAILURE CHI1 BFFA4D81 -1074115199
ACQIRIS ERROR_HW_FAILURE CH2 BFFA4D82 -1074115198
ACQIRIS ERROR_ HW FAILURE CH3 BFFA4D83 -1074115197
ACQIRIS ERROR HW FAILURE CH4 BFFA4D84 | -1074115196
ACQIRIS_ ERROR_HW_FAILURE_CHS BFFA4D85 -1074115195
ACQIRIS ERROR_HW_FAILURE CH6 BFFA4D86 -1074115194
ACQIRIS ERROR_HW_FAILURE CH7 BFFAAD87 -1074115193
ACQIRIS ERROR_ HW FAILURE CHS8 BFFA4D88 -1074115192
ACQIRIS ERROR HW FAILURE EXTI BFFA4DAO -1074115168
ACQIRIS ERROR_ MAC T0 ADJUSTMENT BFFA4DCO | -1074115136
ACQIRIS ERROR MAC ADC ADJUSTMENT BFFA4DC1 | -1074115135
ACQIRIS ERROR MAC RESYNC ADJUSTMENT BFFA4ADC2 -1074115134
ACQIRIS WARN SETUP_ADAPTED 3FFA4EQO 1073368576
ACQIRIS WARN READPARA NBRSEG ADAPTED 3FFA4E10 1073368592
ACQIRIS WARN READPARA NBRSAMP ADAPTED 3FFA4E11 1073368593
ACQIRIS WARN EEPROM AND DLL MISMATCH 3FFA4E12 1073368594
ACQIRIS WARN ACTUAL DATASIZE ADAPTED 3FFA4E13 1073368595
ACQIRIS WARN UNEXPECTED TRIGGER 3FFA4E14 1073368596
ACQIRIS WARN READPARA FLAGS ADAPTED 3FFA4E15 1073368597
ACQIRIS WARN SIMOPTION STRING UNKNOWN 3FFA4E16 1073368598
ACQIRIS WARN INSTRUMENT IN USE 3FFA4E17 1073368597
ACQIRIS WARN HARDWARE TIMEOUT 3FFA4EGO 1073368672
ACQIRIS WARN RESET IGNORED 3FFA4E6G1 1073368671
ACQIRIS WARN SELFCHECK MEMORY 3FFA4F00 1073368832
ACQIRIS WARN CLOCK_SOURCE 3FFA4F01 1073368833
ACQIRIS WARN_NUMERIC_OVERFLOW 3FFA4F20 1073368864

Table 2-1 Acqiris Error Codes

Error code Hex value Decimal value

VI SUCCESS 0 0

VI ERROR_PARAMETER1 BFFC0001 -1074003967
VI ERROR PARAMETER2 BFFC0002 -1074003966
VI ERROR PARAMETER3 BFFC0O003 -1074003965
VI ERROR PARAMETER4 BFFC0O004 -1074003964
VI ERROR PARAMETERS BFFC0005 -1074003963
VI ERROR PARAMETER6 BFFC0006 -1074003962
VI ERROR PARAMETER?Y BFFCO007 -1074003961
VI ERROR PARAMETERS BFFC0O008 -1074003960
VI ERROR _FAIL ID QUERY BFFCO011 -1074003951
VI ERROR _INV RESPONSE BFFC0012 -1074003950

Table 2-2 VXIplug&play Error Codes

If important parameters supplied by the user (e.g. an instrumentID) are found to be invalid, most functions do not
execute and return an error code of the type VI ERROR_PARAMETERI, where i = 1, 2,... corresponds to the
argument number.

If the user attempts (with a function AcqrsD1_configXXXX) to set a digitizer parameter to a value outside of its
acceptable range, the function typically adapts the parameter to the closest allowed value and returns
ACQIRIS_WARN_SETUP_ADAPTED. The digitizer parameters that are actually in use can be retrieved with the
query functions AcqrsD1_getXXXX.

Data are always returned through pointers to user-allocated variables or arrays.

Some parameters are labeled "Currently ignored". It is recommended to supply the value "0" (Vi Int32) or "0.0"
(ViReal 64) in order to be compatible with future products that may offer additional functionality.

Programmer’s Reference Manual Page 10 of 222

2.2. API Function classification

The API has been split into three families:
= Acqrs Generic functions - AqBx - these can be used for all Acqiris Instruments
= AcqrsDI Digitizer functions - AqDx - to be used for Digitizers and Analyzers

= AcqrsT3 Time-to-Digital Converter functions - AqTx - to be used for the family of Time-to-Digital
Converters

All of these functions are still contained in one library called AqDrv4. However, there are separate files for the
headers and the LabWindows front-panel interface. The LabView interface is also split into the three corresponding
AgXX parts. The AcqrsD1 section includes redundant copies of the generic functions so that backward calling
compatibility can be maintained for existing code.

Visual Basic support will be limited to the Generic and AcqrsD1 families. Time-to-Digital Converters are not

supported.

AcqirisInterface.h is the header file for these functions:

Generic Initialization Functions

Number of Physical Instruments
Initialization
Initialization with Options

Simulation Options

Generic Calibration Functions

Calibrate Instrument

Calibrate Instrument Extended

Interrupt Calibration

Load calibration values from a file

Query about the necessity of self calibration

Save all calibration values in a file

Generic Query Functions

Instrument Basic Data
Instrument Information

Number of Channels

Generic Utility Functions

Version

Error Message

Reset

Set LED Color
Close an instrument
Close all instruments

Resume the control of an instrument that
was suspended

Suspend control of an instrument

Prepare for entry or return from the system
power down state

Function Name
Acqrs_getNbriInstruments
Acqrs_init
Acqrs_InitWithOptions

Acqrs_setSimulationOptions

Acqrs_calibrate
Acqrs_calibrateEx
Acqrs_calibrateCancel
Acqrs_calload
Acqrs_calRequired

Acqrs_calSave

Acqgrs_getinstrumentData
Acqrs_getinstrumentinfo

Acqrs_getNbrChannels

Acqrs_getVersion
Acgrs_errorMessage
Acgrs_reset
Acqrs_setLEDColor
Acqrs_close
Acqrs_closeAll

Acqrs_resumeControl

Acqrs_suspendControl

Acqrs_powerSystem

AcqirisD1Interface.h is the header file for these functions:

Digitizer Initialization Functions

Number of Physical Instruments (deprec.)

Multilnstrument Auto Define

Programmer’s Reference Manual

Function Name

AcqrsD1_getNbrPhysical Instruments

AcqrsD1_multilnstrAutoDefine

Page 11 of 222

Initialization (deprec.)
Initialization with Options (deprec.)

Simulation Options (deprec.)

Digitizer Calibration Functions

Calibrate Instrument (deprec.)

Calibrate Instrument Extended (deprec.)

Digitizer Configuration Functions

Configure Vertical Settings
Configure Horizontal Settings
Configure Channel Combination
Configure Trigger Class
Configure Trigger Source
Configure Trigger TV
Configure Memory Settings
Configure Memory Settings (extended)
Configure External Clock
Configure Digitizer Mode
Configure Multiplexer Input
Configure Control 10

Configure Frequency Counter

Configure Averager Configuration Attribute

Configure on-board FPGA

(deprec.)

(program)

Configure Array of Setup Parameters
Logical Device 10

Multilnstrument Manual Define
Multilnstrument Undefine

Setup Streaming in SC Analyzer

Digitizer Acquisition Control Functions

Start Acquisition

Start Acquisition (Extended)
Query Acquisition Status
Software Trigger

Software Trigger (Extended)
Stop Acquisition

AcqrsD1_init
AcqrsD1_InitWithOptions

AcqrsD1_setSimulationOptions

AcqrsD1_calibrate

AcqrsD1_calibrateEx

AcgrsD1_configVertical

AcqrsD1_configHorizontal

AcqrsD1_configChannelCombination

AcqrsD1_configTrigClass
AcqrsD1_configTrigSource
AcqrsD1_configTrigTV
AcqrsD1_configMemory
AcqrsD1_configMemoryEx
AcqrsD1_configExtClock
AcqrsD1_configMode
AcgrsD1_configMultilnput
AcgrsD1_configControl 10
AcgrsD1_configFCounter
AcqrsD1_configAvgConfig
AcgrsD1_configAvgConfigInt32
AcqrsD1_configAvgConfigReal64

AcqrsD1_configlLogicDevice

AcqrsD1_configSetupArray
AcqrsD1_logicDevicelO
AcgrsD1_multilInstrDefine
AcqrsD1_multilnstrUndefineAll
AcqrsD1_setAttributeString

AcqrsD1_acquire
AcqrsD1_acquireEx
AcqrsD1_acqgDone
AcqrsD1_forceTrig
AcqrsD1_forceTrigEx
AcqrsD1_stopAcquisition

Wait for End of Acquisition AcqrsD1_waitForEndOfAcquisition

Number of Acquired Segments AcgrsD1_reportNbrAcquiredSegments

Digitizer Data Transfer Functions
Universal Waveform Read AcqrsD1_readData
Accumulate Data AcqrsD1_accumulateData

Averaged Data AcgrsD1_averagedData

Programmer’s Reference Manual Page 12 of 222

Read Frequency Counter
Digitizer Query Functions

Query External Clock

Query Horizontal Settings

Query Channel Combination

Query Memory Settings

Query Memory Settings (extended)

Query Multiplexer Input

Query Trigger Class

Query Trigger Source

Query Trigger TV

Query Vertical Settings

Query Digitizer Mode

Query Control IO

Query Frequency Counter

Query Averager Configuration

Instrument Basic Data (deprec.)

Instrument Information (deprec.)

Number of Channels

Query Array of Setup Parameters
Digitizer Control Functions

Query (on-board) Processing Status

Start (on-board) Processing

Stop (on-board) Processing

Wait for End of (on-board) Processing
Digitizer Utility Functions

Best Nominal Samples

Best Sampling Interval

Version

Error Message

Extended Error Message

Reset (deprec.)

Reset Digitizer Memory

Restore Internal Registers

Set LED Color

Close all instruments (deprec.)

Programmer’s Reference Manual

AcqrsD1_readFCounter

AcqrsD1_getExtClock
AcqrsD1_getHorizontal
AcqrsD1_getChannelCombination
AcqrsD1_getMemory
AcqrsD1_getMemoryEx
AcqgrsD1_getMultilnput
AcqrsD1_getTrigClass
AcqrsD1_getTrigSource
AcqrsD1_getTrigTV
AcqrsD1_getVertical
AcqrsD1_getMode
AcqrsD1_getControllO
AcqgrsD1_getFCounter
AcqrsD1_getAvgConfig
AcqrsD1_getAvgConfigInt32
AcqrsD1_getAvgConfigReal 64
AcqgrsD1_getinstrumentData
AcqrsD1_getInstrumentinfo
AcqrsD1_getNbrChannels
AcqrsD1_getSetupArray

AcqrsD1_procDone
AcqrsD1_processData
AcqrsD1_stopProcessing

AcqrsD1_waitForEndOfProcessing

AcqgrsD1_bestNominalSamples
AcqrsD1_bestSamplInterval
AcqrsD1_getVersion
AcqgrsD1_errorMessage
AcqrsD1_errorMessageEx
AcqrsD1_reset

AcqrsD1_resetDigitizerMemory

AcqrsD1l_restorelnternalRegisters

AcqrsD1_setLEDColor
AcqrsD1_closeAll

Page 13 of 222

AcqirisT3Interface.h is the header file for these functions:

Time-to-Digital Converter Configuration Functions

Configure Acquisition Conditions AcqrsT3_configAcqConditions

Configure Channel AcqrsT3_configChannel
Time-to-Digital Converter Acquisition Control Functions

Start Acquisition AcqgrsT3_acquire

Query Acquisition Status AcqrsT3_acgDone

Force trigger AcqrsT3_forceTrig

Stop Acquisition AcqgrsT3_stopAcquisition

Wait for End of Acquisition AcqrsT3_wailtForEndOfAcquisition

Time-to-Digital Converter Data Transfer Functions
Universal Time Data Read AcqrsT3_readData
AcqrsT3_readDatalnt32
AcqrsT3_readDataReal 64
Time-to-Digital Converter Query Functions
Query Acquisition Conditions AcqrsT3_getAcqConditions
Query Channel AcqrsT3_getChannel

Programmer’s Reference Manual Page 14 of 222

2.3. API Function descriptions

This section describes each function in the Device Driver. The functions appear in alphabetical order.

2.3.1 Acqrs_calibrate

Purpose

Performs an auto-calibration of the instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_calibrate(ViSession instrumentliD);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Calibrate Instrument.vi

Instrument ID il dup Instrument 10
Calib.

Errar in.(no errar) error auk

Visual Basic .NET Representation

Acqrs_calibrate (ByVval instrumentlD As Int32) As Int32
MATLAB MEX Representation

[status]= Aq_calibrate(instrumentiD)

Programmer’s Reference Manual

Page 15 of 222

2.3.2 Acqrs_calibrateCancel

Purpose

Interrupts a calibration of the instrument launched from a different thread

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

Acqrs_calibrateCancel (ViSession instrumentiD);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibrate Cancel.vi

Instrunvent ID

error in [ho errar)

Calib,
Cancel

efrar ouk

Visual Basic .NET Representation

Acqrs_calibrateCancel (ByVval

MATLAB MEX Representation

dup InstrumentID

instrumentlID As Int32) As Int32

[status]= Aq_calibrateCancel (instrumentlD)

Programmer’s Reference Manual

Page 16 of 222

2.3.3 Acqrs_calibrateEx

Purpose

Performs a (partial) auto-calibration of the instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
calType Vilnt32 = 0 calibrate the entire instrument

= 1 calibrate only the current channel configuration
= 2 calibrate external clock timing. Requires operation
in External Clock (Continuous).
= 3 calibrate only at the current frequency
(12-bit-FAMILY, only)
= 4 fast calibration for current settings only
modifier Vilnt32 For calType = 0,1, or 2: Currently unused, set to “0”
For calType = 3 or 4, 0 = calibrate for all channels
n = calibrate for channel "n"
flags Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion
Calling this function with calType = 0 is equivalent to calling Acqrs_calibrate.

Calibrating with calType = 1 reduces the calibration time in digitizers with many possible channel
combinations, e.g. the DC271. However, the user must keep track of which channel combinations were
calibrated, and request another such partial calibration when changing the channel configuration with the
function AcqrsD1_configChannelCombination.

Calibrating with calType = 2 can only be done if the external input frequency is appropriately high. See the
discussion in the Programmer's Guide section 3.16.2, External Clock (Continuous). If the calibration
cannot be done an error code will be returned. It is not applicable for AP240 Signal Analyzer Platforms.

Calibrating with calType = 3 is for 12-bit digitizers only and is needed to support the HRes SR
functionality. For best results it, or the longer full calibration, should be called after a change of sampling
rate.

Calibrating with calType = 4 is for DC135, DC140, DC211A, DC241A, DC271A, DC271AR and 10-bit-
FAMILY models. A new calibration should be done if the AcqrsD1_ configChannelCombination
parameters or any of the following AcqrsD1_configVertical parameters are changed: fullScale, coupling
(impedance), bandwidth, channel. This calibration will be much faster than the calType = 0 case for models
with more than one impedance setting. It will use the new values that have been asked for.

Programmer’s Reference Manual Page 17 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_calibrateEx(ViSession instrumentlD,
Vilnt32 calType, Vilnt32 modifier, Vilnt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) CalibrateEx Instrument.vi

Fqlx
i Calib.

calType
rodifier = E?

Instrument ID

dup Instrument ID

[gror Uk

Ertor in [no error) s

Visual Basic .NET Representation

Acqrs_calibrateEx (ByVal instrumentlD As Int32, _
Byval calType As Int32, _
Byval modifier As Int32, _
Byval flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrateEx(instrumentlD, calType, modifier, flags)

Programmer’s Reference Manual

Page 18 of 222

2.3.4 Acqrs_calLoad

Purpose

Load calibration values from file. (For 10-bit-FAMILY//U1071A-FAMILY)

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
filePathName ViConstString File path and file name
flags Vilnt32 Flags, may be:

0 = default filename. Calibration values will be loaded
from the ‘snXXXXX calVal.bin’ file in the working
directory. ‘filePathName’ MUST be NULL or “”
(empty String).

1 = specify path only. Calibration values will be loaded
from the ‘snXXXXX calVal.bin’ file in the specified
directory. ‘filePathName’ MUST be non-NULL.

2 = specify filename. ‘filePathName’ represents the
filename (with or without path) and MUST be non-
NULL and non-empty.

Return Value

Name Type Description
status ViStatus Refer to chapter 2.1 in Programmer’s Reference
Manual for error codes.

Discussion

Load calibration values from a binary file. The path or full filename can be specified, else default values
will be used (‘snXXXXX calVal.bin’ file in the working directory).

The function can return the following error codes:
e ACQIRIS ERROR FILE CORRUPTED if the file is corrupted

e ACQIRIS ERROR FILE VERSION if the file has been generated with a driver version different
than the used one (major and minor).

e ACQIRIS ERROR FILE SERIAL if the file does not correspond to the instrument or an AS bus
multi-instrument has changed.

Programmer’s Reference Manual Page 19 of 222

LabWindowsCVI/Visual C++ Representation

ViStatus status

Acqrs_callLoad(ViSession instrumentlD, ViConstString

filePathName, Vilnt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Calibration Load Instrument.vi

Instrument ID
filePathMarne
Flags

errar in (no errar)

"
o —

AqBz -
Calik.
Laoad

dup Instrument ID

S N

i

Visual Basic .NET Representation

Acqrs_callLoad (ByVval
Byval filePathName As String, _
ByvVal flags As Int32) As Int32

instrumentlID As Int32, _

MATLAB MEX Representation

[status] = Aq_calLoad(instrumentlD, filePathName, flags)

Programmer’s Reference Manual

Page 20 of 222

2.3.5 Acqrs_calRequired

Purpose

Check if a self calibration is needed. (For 10-bit-FAMILY/U1071A-FAMILY)

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 Channel number [0,1... Nchan]
Output
Name Type Description
isRequiredP ViBoolean = VI_TRUE if a calibration on channel chan is needed
VI FALSE otherwise

Return Value

Name Type Description
status ViStatus Refer to chapter 2.1 in Programmer’s Reference
Manual for error codes.

Discussion
Query about the necessity of self calibration.
The value channel = 0 can be used to do the query on all channels simultaneously.

A calibration is needed for channel channel, > 0, if one or more of the 3 following condition is true:

® The channel channel of the instrument has never been calibrated for the desired acquisition
conditions.

® [t has been calibrated more than 2 hours ago.

® The instrument temperature since the last calibration has changed by more than 5°C.

Programmer’s Reference Manual Page 21 of 222

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_calRequired(ViSession instrumentlD, Vilnt32 channel,
ViBoolean* isRequiredP);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Query Calibration Required.vi

Instrument ID gj:;u dup Instrument 10
Channel {0) — .'::“';ﬁifr-c = isRequiredP

errar in (no error) === e gppr otk

Visual Basic .NET Representation

Acqrs_calRequired (ByVal instrumentlD As Int32, ByVal channel As Int32,
ByRef isRequired As Boolean) As Int32

MATLAB MEX Representation

[status isRequired] = Ag_calRequired(instrumentlD, channel)

Programmer’s Reference Manual Page 22 of 222

2.3.6 Acqrs_calSave

Purpose

Save all calibration values in a binary file. (For 10-bit-FAMILY//U1071A-FAMILY)

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

filePathName ViConstString File path and file name

flags Vilnt32 Flags, may be:
0 = default filename. Calibration values will be loaded
from the ‘snXXXXX calVal.bin’ file in the working
directory. ‘filePathName’ MUST be NULL or “”
(empty String).
1 = specify path only. Calibration values will be loaded
from the ‘snXXXXX calVal.bin’ file in the specified
directory. ‘filePathName’ MUST be non-NULL.
2 = specify filename. ‘filePathName’ represents the
filename (with or without path) and MUST be non-
NULL and non-empty.

Return Value
Name Type Description

status ViStatus Refer to chapter 2.1 in Programmer’s Reference

Manual for error codes.

Discussion

Write calibration values in a binary file. The path or full filename can be specified, else default values will
be used (‘snXXXXX calVal.bin’ file in the working directory).

NOTE: If the file already exists, it will be overwritten.

Programmer’s Reference Manual Page 23 of 222

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_calSave(ViSession instrumentlD, ViConstString
filePathName, Vilnt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibration Save.vi

Instrument ID [t |
filePathMame =¥ Calik:.

Fave errar aut
flags —I_g
error in (no error)

dup Instrument ID

Visual Basic .NET Representation

Acqrs_calSave (Byval instrumentID As Int32, _
Byval filePathName As String, _
Byval flags As Int32) As Int32

MATLAB MEX Representation

[status] = Ag_calSave(instrumentID, filePathName, flags)

Programmer’s Reference Manual Page 24 of 222

2.3.7 Acqrs_close

Purpose

Closes an instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Close the specified instrument. Once closed, this instrument is not available anymore and needs to be
reenabled using 'TnitWithOptions' or 'init'. 10-bit-FAMILY digitizers will have their power consumption
lowered. Appropriate warm-up time may be needed when they are used again.

For freeing properly all resources, 'closeAll' must still be called when the application closes, even if 'close'

was called for each ins

trument.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acq

rs_close(ViSession instrumentiD);

LabVIEW Representation

Acqiris Bx.lvlib: (or

Ag Bx) Close.vi

Instrument ID Eaﬁaﬁ dup InstrumentID
errorin (no error) Close error out

Visual Basic .NET Representation

Acqrs_close (Byval in

strumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_close(in

Programmer’s Reference Manual

strumentlID)

Page 25 of 222

2.3.8 Acqrs_closeAll

Purpose

Closes all instruments in preparation for closing the application.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function should be the last call to the driver, before closing an application. Make sure to stop all
instruments beforehand. 10-bit-FAMILY digitizers will have their power consumption lowered. Appropriate
warm-up time may be needed when they are used again.

If this function is not called, closing the application might crash the computer in some situations,
particularly in multi-threaded applications.

LabWindowsCVI1/Visual C++ Representation
ViStatus status = Acqrs_closeAll(void);
LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Close All Instruments.vi

- BiqB

&rrarin (no error) CloseAll error auk

Visual Basic .NET Representation

Acqrs_closeAll () As Int32
MATLAB MEX Representation

[status]= Aq_closeAll()

Programmer’s Reference Manual Page 26 of 222

2.3.9 Acqrs_configlogicDevice

Purpose
Configures (programs) on-board logic devices, such as user-programmable FPGA’s.

NOTE: With the exception of AC and SC Analyzers, this function now needs to be used only by VxWorks
users to specify the filePath for FPGA .bit files. Otherwise it should no longer have to be used

Parameters

Input
Name Type Description
instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to program
For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it can
be "ASBUS::n::Block1Dev1" with n ranging from 0
to the number of modules -1.
When clearing the FPGA?” s, the string must be
"Block1DevAll".
filePathName ViChar [] File path and file name
flags Vilnt32 flags, may be:
0 = program logic device with data in the file
“filePathName”
1 = clear the logic device
2 = set path where FPGA .bit files can be found
3 =0 + use normal search order with AqDrv4.ini file

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

With flags = 2 in VxWorks systems, the filePathName must point to a directory containing the FPGA
configuration files with extension ‘.bit’

With flags = 0 or 3, the filePathName must point to an FPGA configuration file with extension .bit’, e.g.
“D:\Averagers\FPGA\AP100DefaultFPGA1.bit”.

For more details on programming on-board logic devices, please refer to the Programmer’s Guide sections
3.2, Device Initialization and 3.3, Device Configuration.

Programmer’s Reference Manual Page 27 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_configlLogicDevice(ViSession instrumentlD,
ViChar deviceName[], ViChar filePathName[],
Vilnt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Configure Logic Device.vi

Instrunent ID g
Device Name 'Mf-"imég},:%'
File Path H Lo error out

Error in (no error)
Flags

dup Instrurment 1D

Visual Basic .NET Representation

Acqrs_configLogicDevice (ByVval instrumentlD As Int32, _
ByVal deviceName As String, _
Byval filePathName As String, _
Byval flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configlLogicDevice(instrumentlD, deviceName, filePathName, flags)

Programmer’s Reference Manual Page 28 of 222

2.3.10 Acqrs_errorMessage

Purpose

Translates an error code into a human readable form.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier can be VI NULL
errorCode ViStatus Error code (returned by a function) to be translated
errorMessageSize | Vilnt32 Size of the errorMessage string in bytes
(suggested size 512)
QOutput
Name Type Description
errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)
into which the error-message text is returned
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function should be called immediately after the return of the error status to ensure that the additional
information remains available. For file errors, the returned message will contain the file name and the

original 'ansi' error string. This is particularly useful for calls to the following functions:

Acqrs_calibrate

Acqrs_configlogicDevice

Acqrs_init

Programmer’s Reference Manual

Acqrs_calibrateEx
Acqrs_configMode

Acqrs_InitWithOptions

Page 29 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_errorMessage(ViSession instrumentlD,
ViStatus errorCode, ViChar errorMessage[],
Vilnt32 errorMessageSize);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Error Message.vi

............................. Status
Instrument ID R dup Instrument 10
Type of Dialog (1; K Msg) - Bff" = Error Message
errar in(no error) == Rrrae bl LEI—Eerr Code
errar aut

Visual Basic .NET Representation

Acqrs_errorMessage (ByVal instrumentID As Int32, _
ByVal errorCode As Int32, _
ByVal errorMessage As String, _
ByVal errorMessageSize As Int32) As Int32
MATLAB MEX Representation

[status errorMessage]= Aq_errorMessage(instrumentlD, errorCode)

Programmer’s Reference Manual

Page 30 of 222

2.3.11 Acqrs_getDevType

Purpose

Returns the deviceType which indicates which family of the API functions can be used.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
devTypeP Vilnt32* Pointer to a device type (see AqDevType) with
1 = Digitizer (AcqrsD1)
2 = RC2xx Generator (AcqrsG2)
4 = TC Time-to-Digital Converter (AcqrsT3)
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

Acqrs_getDevType(ViSession instrumentliD,
Vilnt32* devTypeP);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx)Query Device Type.vi

PigBx

Instrument ID

Huzryp
Dlewice
Type

error in (no error)

Visual Basic .NET Representation

Acqrs_getDevType (ByVval

dup Instrument 10
— —devTvpe out
E==grror out

instrumentlD As Int32, _

ByRef devType As Long) As Int32

MATLAB MEX Representation

[status devType]= Aq_getDevType(instrumentlD)

Programmer’s Reference Manual

Page 31 of 222

2.3.12 Acqrs_getDevTypeBylndex

Purpose

Returns the deviceType which indicates which family of API functions can be used.

Parameters
Input
Name Type Description
devIndex Vilnt32 Device Index (the integer part of the resource name as
used in Acqrs_initWithOptions. See the
Programmer’s Guide section 3.2.1)
QOutput
Name Type Description
devTypeP Vilnt32* Pointer to a device type (see AqDevType) with
1 = Digitizer (AcqrsD1)
2 = RC2xx Generator (AcqrsG2)
4 = TC Time-to-Digital Converter (AcqrsT3)

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getDevTypeBylndex(Vilnt32 devindex,
Vilnt32* devTypeP);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx)Query Device Type By Index.vi

Device Index i';fu"g’;- dup Device Index
: T devType
upe
Error in (no error) B i i

Visual Basic .NET Representation

Acqrs_ getDevTypeBylndex (ByVal devindex As Int32, _
ByRef devType As Long) As Int32

MATLAB MEX Representation

[status devType]= Aq_getDevType(devindex)

Programmer’s Reference Manual

Page 32 of 222

2.3.13 Acqrs_getInstrumentData

Purpose

Returns some basic data about a specified instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
name ViChar [] Pointer to user-allocated string, into which the model
name is returned (length < 32 characters).
serialNbr Vilnt32 Serial number of the module.
busNbr Vilnt32 Bus number of the module location.
slotNbr Vilnt32 Slot number of the module location. (logical)

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_getlnstrumentData(ViSession instrumentlD, ViChar
name[], Vilnt32* serialNbr,
Vilnt32* busNbr, Vilnt32* slotNbr);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Query Instrument ID.vi

'_mt:"“m"“ Mame
Instrument ID E dup Instrument 1D

qB:
FIEIg L Setial Murnber
errar inno error) D ﬂ L Bus Mumber

error ouk
Slot Mumber

Visual Basic .NET Representation

Acqrs_getinstrumentData (ByVal instrumentlD As Int32, _
ByvVal name As String, ByRef serialNbr As Int32, _
ByRef busNbr As Int32,
ByRef slotNbr As Int32) As Int32

MATLAB MEX Representation

[status name serialNbr busNbr slotNbr]= Aq_getInstrumentData(instrumentiD)

Programmer’s Reference Manual Page 33 of 222

2.3.14 Acqrs_getInstrumentInfo

Purpose

Returns general information about a specified instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
parameterString ViString Character string defining the requested parameter. See
below for the list of accepted strings.
Output
Name Type Description
infoValue ViAddr Requested information value.
ViAddr resolves to void™ in C/C++. The user must
allocate the appropriate variable type (as listed below)
and supply its address as 'infoValue'.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Accepted Parameter Strings
Parameter String Returned Description
Type
"ASBus_m_BusNb" Vilnt32 Bus number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules —1).
"ASBus_ m_IsMaster" Vilnt32 Returns 1 if the m'th module of a multi-instrument is the
master, 0 otherwise. m runs from 0 to (nbr of modules —1).
"ASBus_ m_PosInCrate" Vilnt32 Physical slot number (position) in cPCI crate of the m 'th
module of a multi-instrument. m runs from 0 to (nbr of
modules —1).
"ASBus_m_SerialNb" . Serial number of the m'th module of a multi-instrument. m
- - Vilnt32
runs from 0 to (nbr of modules —1).
"ASBus_ m_SlotNb" . Slot number of the m'th module of a multi-instrument. m
- - Vilnt32
runs from 0 to (nbr of modules —1).
"CrateNb" Vilnt32 Physical crate number (perhaps from AqGeo.map)
"DelayOffset" ViReal64 | Calibrated Delay Offset
(only useful for recovery of battery backed-up acquisitions)
"DelayScale™ ViReal64 | Calibrated Delay Scale
(only useful for recovery of battery backed-up acquisitions)
"ExtCkRatio" ViReal64 | Ratio of sFmax over external clock inputFrequency
"HasTrigVeto" Vilnt32 Returns 1 if the functionality is available, 0 otherwise.
"1sPreTriggerRunning" Vilnt32 Returns 1 if the module has an acquisition started but is not
yet ready to accept a trigger.
"LogDevDataL inks" Vilnt32 Number of available data links for a streaming analyzer
""LOGDEVHDRBLOCKmMDEVNS ViChar[] | Returns information about FPGA firmware loaded. See
string” comments below.
""MaxSamplesPerChannel™" Vilnt32 Maximum number of samples per channel available in
digitizer mode
"NbrADCBits" Vilnt32 Number of bits of data per sample from this modules ADCs
"NbrExternalTriggers" Vilnt32 Number of external trigger sources
"NbrinternalTriggers" Vilnt32 Number of internal trigger sources
"NbrModulesInlnstrument' | Vilnt32 Number of modules in this instrument. Individual modules
(not connected through AS bus) return 1.
"Options™ ViChar[] | List of options, separated by °,’, installed in this instrument.
"OverloadStatus chan" Vilnt32 Returns 1 if chan is in overload, 0 otherwise.

Programmer’s Reference Manual

Page 34 of 222

Parameter String Returned Description
Type

chan takes on the same values as 'channel' in
AcgrsD1_configTrigSource.

"OverloadStatus ALL" Vilnt32 Returns 1 if any of the signal or external trigger inputs is in
overload, 0 otherwise.
Use the "OverloadStatus chan " string to determine which
channel is in overload.

"PosInCrate™ Vilnt32 Physical slot number (position) in cPCI crate
""SSRTimeStamp™ ViReal64 | Current value of time stamp for Analyzers in SSR mode.
"TbNextSegmentPad" Vilnt32 Returns the additional array space (in samples) per segment

needed for the image read of AcqrsD1_readData. It
concerns the data available after the next call to
AcqrsD1_acquire, as opposed to any current or past
acquisition with different conditions.

"TbSegmentPad" Vilnt32 Returns the additional array space (in samples) per segment
needed for the image read of AcqrsD1_readData. It
concerns the current data available, as opposed to any
future acquisition with different conditions.

"Temperature m" Vilnt32 Temperature in degrees Centigrade (°C)
"TrigLevelRange chan™ ViReal64 | Trigger Level Range on channel chan
“VersionUserDriver” ViChar[] | String containing the full driver version.
Discussion

The case of "LOGDEVHDRBLOCKMDEVNS string" is one in which several possible values of m, n, and
string are allowed. The single digit number m refers to the FPGA block in the module. For the moment this
must always have the value 1. The single digit number n refers to the FPGA device in the block. It can have
values in the range 1,2,3,4 depending on the module. Among the interesting values of string are the

nn n n "nn

following case-sensitive strings: "name", "version", "versionTxt", "compDate", "model".

Programmer’s Reference Manual Page 35 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_getinstrumentInfo(ViSession instrumentlD, ViString
parameterString, ViAddr infoValue);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Query Instrument Information.vi

[]

Instrunment ID
Parameter String
Returned Tvpe
Error in (no error)

dup Instrurnent 1D
Eloid] L Info Yalue (1323
InEs '““‘i Info Value (DBELY

=== Trifo walue (string)
error out

NOTE: The type of the returned value depends on the parameter requested. In LabVIEW, the correct returned type
should be supplied as input to the VI, and the appropriate output wire connected. Any other wire will always return
Zero.

Visual Basic .NET Representation

Acqrs_getinstrumentinfo (Byval instrumentlD As Int32, _
ByVal parameterString As String, _
ByRef infoValue As Int32) As Int32
or

Acqrs_getinstrumentinfo (Byval instrumentlD As Int32, _
ByVal parameterString As String, _
ByRef infoValue As Double) As Int32
or

Acqrs_getinstrumentinfo (ByvVal instrumentlD As Int32, _

ByVal parameterString As String, _
Byval infovalue As String) As Int32

MATLAB MEX Representation

[status infoValue] = Ag_getinstrumentlnfo(instrumentlD, parameterString,
dataTypeString)

Allowed values of dataTypeString are ~integer”, *double”,or *string” .

Programmer’s Reference Manual Page 36 of 222

2.3.15 Acqrs_getNbrChannels

Purpose

Returns the number of channels on the specified module.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
nbrChannels Vilnt32 Number of channels in the specified module

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_getNbrChannels(ViSession instrumentlD,

nbrChannels);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Number of Channels.vi

Instrument ID Bl dup Instrument ID
fary L Mumber aof Channels
2rror in (no error) Y o= grror ouk

Visual Basic .NET Representation

Acqrs_getNbrChannels (ByVal instrumentlD As Int32, _
ByRef nbrChannels As Int32) As Int32

MATLAB MEX Representation

[status nbrChannels] = Aq_getNbrChannels(instrumentiD)

Programmer’s Reference Manual

Vilnt32*

Page 37 of 222

2.3.16 Acqrs_getNbrInstruments

Purpose

Returns the number of Acqiris instruments found on the computer.

Parameters
Output
Name Type Description
nbrlnstruments Vilnt32 Number of Acqiris instruments found on the computer

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

In the case of multiple processes accessing the Agilent Acqiris instruments, this function will return the
number of currently available instruments. If an instrument has already been initialized in another process, it
will not be available unless it has been suspended via a call to Acqrs_suspendControl.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_getNbrinstruments(Vilnt32* nbrinstruments);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Query Number of Instruments.vi

Aqll
iz mumber of Instrurments

i 1 Ingtr.|
error in [no errar) error auk

Visual Basic .NET Representation

Acqrs_getNbrinstruments (ByRef nbrinstruments As Int32) As Int32
MATLAB MEX Representation

[status nbrinstruments]= Aq_getNbrinstruments()

Programmer’s Reference Manual Page 38 of 222

2.3.17 Acqrs_getVersion

Purpose

Returns version numbers associated with a specified instrument or current device driver.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
versionltem Vilnt32 1 for version of Kernel-Mode Driver
2 for version of EEPROM Common Section
3 for version of EEPROM Instrument Section
4 for version of CPLD firmware
Output
Name Type Description
version Vilnt32 version number of the requested item

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

For drivers, the version number is composed of 2 parts. The upper 2 bytes represent the major version
number, and the lower 2 bytes represent the minor version number.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_getVersion(ViSession instrumentliD,
Vilnt32 versionltem, Vilnt32* version);

LabVIEW Representation
Acqiris Bx.lvlib: (or Ag Bx) Revision Query.vi

-Instr Driver Rey (numeric)

Instrument ID [EaE | dup Instrurment 1D
Firmware ¥Yersion Item {4: C... ;' EE::WW“L': Inskr Driver Rewvision
error in {no errar) “““‘I"““"“"Lmlnstr Firmiware Revision
error out

Inskr Firrware Fes (numeric)

Visual Basic .NET Representation

Acqrs_getVersion (ByVal instrumentiD As Int32, _
ByVal versionltem As Int32, ByRef version As Int32) As Int32

MATLAB MEX Representation

[status version] = Ag_getVersion(instrumentlD, versionltem)

Programmer’s Reference Manual Page 39 of 222

2.3.18 Acqrs_init

Purpose

Initializes an instrument.

Parameters
Input
Name Type Description
resourceName ViRsrc ASCII string which identifies the module to be
initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to "TRUE', resets the module after initialization.
QOutput
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization, for a detailed explanation
on the initialization procedure.

The function returns the error code ACQIRIS ERROR INIT STRING INVALID when the initialization
string could not be interpreted.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_init(ViRsrc resourceName, ViBoolean IDQuery, ViBoolean
resetDevice, ViSession* instrumentiD);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Initialize.vi

Resource Mame {PCIZINSTRO) B Instrument ID
-BEEIE % hame

1D Query (F: Skip) - B L
Reset (T: Resgt) - H {iinikis),) E'—Serial Mumber

Error in (no errar) error ouk

Visual Basic .NET Representation

Acqrs_init (ByVal resourceName As String, ByVal 1DQuery As Boolean,
ByVal resetDevice As Boolean, ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentlD] = Ag_init(instrumentlD, IDQuery, resetDevice)

Programmer’s Reference Manual Page 40 of 222

2.3.19 Acqrs_InitWithOptions

Purpose

Initializes an instrument with options.

Parameters
Input
Name Type Description

resourceName ViRsre ASCII string which identifies the instrument to be
initialized. See discussion below.

IDQuery ViBoolean Currently ignored

resetDevice ViBoolean If set to "TRUE', resets the instrument after
initialization.

optionsString ViString ASCII string that specifies options.
Syntax: "optionName=bool" where bool is TRUE (1)
or FALSE (0).
Currently three options are supported:
”CAL”: do calibration at initialization (default 1)
"DMA": use scatter-gather DMA for data transfers
(default 1).
"simulate": initialize a simulated device (default 0).
NOTE: optionsString is case insensitive.

Output

Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization for a detailed explanation
on the initialization procedure.

The function returns the error code ACQIRIS ERROR_INIT STRING INVALID when the initialization
string could not be interpreted.

Multiple options can be given; Separate the option=value pairs with ,” characters.

Programmer’s Reference Manual Page 41 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_InitWithOptions(ViRsrc resourceName, ViBoolean
IDQuery, ViBoolean resetDevice, ViString optionsString,

ViSession* instrumentiD);

LabVIEW Representation
Acqiris Bx.lvlib: (or Aq Bx) Initialize with Options.vi

Ciptions String (null string) Trmm——
Resource Mame {PCI:INSTRO) il Instrument 1D
ID Query (Fr Skip) = L plame
Reset (T: Resst] : "“"’L:Serial Mumber
EEFOF in L no error i error out
{ 1 i

Simulation Opkions (null st

Visual Basic .NET Representation

Acqrs_InitWithOptions (ByVal resourceName As String, _
ByvVal IDQuery As Boolean, _
ByVal resetDevice As Boolean, _
ByVal optionsString As String, _
ByRef instrumentlD As Int32) As Int32

MATLAB MEX Representation
[status instrumentlD]= Aq_initWithOptions(resourceName, IDQuery, resetDevice,
optionsString)

Page 42 of 222

Programmer’s Reference Manual

2.3.20 Acqrs_logicDevicelO

Purpose

Reads/writes a number of 32-bit data values from/to a user-defined register in on-board logic devices, such
as user-programmable FPGAs. It is useful for AC/SC Analyzers only.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

deviceName ViChar [] Identifies which device to read from or write to.
For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it can
be "ASBUS::n::Block1Dev1" with n ranging from 0
to the number of modules -1

registerID Vilnt32 Register Number, can typically assume 0 to 127

nbrValues Vilnt32 Number of data values to read

dataArray Vilnt32 [] User-supplied array of data values

readWrite Vilnt32 Direction 0 = read from device, 1 = write to device

flags Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion
This function is only useful if the user programmed the on-board logic device (FPGA).

Typically, nbrValues is set to 1, but it may be larger if the logic device supports internal address auto-
incrementation. The following example reads the (32-bit) contents of register 5 to reg5Value:

ViStatus status =
Acqrs_logicDevicelO(ID, "BlocklDevl", 5, 1, ®5value, 0, 0);

Note that dataArray must always be supplied as an address, even when writing a single value.

Programmer’s Reference Manual Page 43 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_logicDevicelO(ViSession instrumentliD,

ViChar deviceName[], Vilnt32 registerlD,
Vilnt32 nbrValues, Vilnt32 dataArray[], Vilnt32
readWrite, Vilnt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Logic Device 10.vi

Data Array In
Mumber of ¥alues
Instrument ID Al | dup Inskrurnent 1D
Device Name 'f,;.-gi:.':} L Dakadtray Out
Register ID .:.:.H_I Dot l) Tee g or ouk

Brrar in {no error)

Read lI,-' Wb o
Flags

Visual Basic .NET Representation

Acqrs_logicDevicelO (ByVal instrumentlD As Int32, _
ByVal deviceName As String, _
ByVal registeriID As Int32, _
ByvVal nbrValues As Int32, _
ByRef dataArray As Int32, _
ByvVal readWrite As Int32, _
ByvVal modifier As Int32) As Int32

MATLAB MEX Representation

Because of the separation of input and output arguments in MATLAB two functions are needed:

[status dataArray] = Ag_logicDeviceRead(instrumentlD, deviceName, registerliD,
nbrvValues, modifier)

[status] = Aq_logicDeviceWrite(instrumentlD, deviceName, registerlD,
nbrvValues, dataArray, modifier)

Programmer’s Reference Manual Page 44 of 222

2.3.21 Acqrs_powerSystem

Purpose

Forces all instruments to prepare entry into or return from the system power down state.

Parameters
Input
Name Type Description
state Vilnt32 0 = 'AqPowerOff' of the AqPowerState enum
1 = 'AqPowerOn' of the AqPowerState enum
flags Vilnt32 Currently unused, set to “0”
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

Typically, this function is called by a 'Power Aware' application, when it catches a 'system power down'

event, such as 'hibernate'.

If 'state == 0', it will suspend all other calling threads. If a thread is performing a long operation which
cannot be completed within milliseconds, such as 'calibrate', it will be interrupted immediately and will get
the status '"ACQIRIS ERROR OPERATION INTERRUPTED'. Note that if an acquisition is still running

while Acqrs_powerSystem(0, 0) is called, it might be incomplete or corrupted.

If 'state == 1', it will reenable the instruments at the same state as they were before Acqrs_powerSystem(0,
0). Threads which were suspended will be resumed. However, interrupted operations which returned an

error 'ACQIRIS ERROR_OPERATION INTERRUPTED' have to be redone.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

LabVIEW Representation

Acqrs_powerSystem(Vilnt32 state, Vilnt32 flags);

There is no LabVIEW implementation of this function.

Visual Basic .NET Representation

Acqrs_powerSystem(ByVal state As Int32, ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status] = Ag_powerSystem(state, flags)

Programmer’s Reference Manual

Page 45 of 222

2.3.22 Acqrs_reset

Purpose

Resets an instrument.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Discussion
There is no known situation where this action is to be recommended.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_reset(ViSession instrumentiD);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Reset.vi

Instrument ID {Falx dup Instrurnent 1D
Et:
errar in (no errard {Fieset | error ouk

Visual Basic .NET Representation

Acgrs_reset (ByvVal instrumentlD As Int32) As Int32
MATLAB MEX Representation

[status] = Agq_reset(instrumentiD)

Programmer’s Reference Manual

Page 46 of 222

2.3.23 Acqrs_resetMemory

Purpose

Resets the instrument’s memory to a known default state.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Each byte of the digitizer memory is overwritten sequentially with the values Oxaa, 0x55, 0x00 and Oxff.
This functionality is mostly intended for use with battery backed-up memories.

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_resetMemory(ViSession instrumentlD);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Reset Memory.vi

Instrument ID gl dup Inskrument 10

Biezet
m.

Brrar in {no error) error ouk

Visual Basic .NET Representation

Acqrs_resetMemory (ByVal instrumentlD As Int32) As Int32
MATLAB MEX Representation

[status] = Ag_resetMemory(instrumentlD)

Programmer’s Reference Manual Page 47 of 222

2.3.24 Acqrs_resumeControl

Purpose

Resume the control of an instrument that was suspended (see Acqrs_suspendControl).

Parameters

Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to chapter 2.1 in Programmer’s Reference
Manual for error codes.

Discussion

This function reacquires the driver lock of the instrument and allows calls to it from the current process. The
error code ACQIRIS ERROR _DEVICE ALREADY OPEN is returned when calling an instrument already
locked by another process.

After successfully calling Acqrs_resumeControl, the module will be set to a default hardware state. It will
have no valid data and the timestamp will be set to 0. When the next acquisition is started, the module will
be configured with all of the unmodified settings from before the Acqrs_suspendControl was invoked.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_resumeControl(ViSession instrumentiD);

LabVIEW Representation

Acqgiris Dx.Ivlib: (or Aq Dx) Resume Control.vi

Instrument ID s dup InskrumentID

Fiesume
Cirl,

errarin (no error) error auk

Visual Basic Representation

ResumeControl (ByVal instrumentlD As Long) As Long

Visual Basic .NET Representation

Acqrs_ resumeControl (ByVal instrumentlD As Int32) As Int32
MATLAB MEX Representation

[status] = Ag_resumeControl(instrumentiD)

Programmer’s Reference Manual Page 48 of 222

2.3.25 Acqrs_setAttributeString

Purpose

Sets an attribute with a string value (for use in SC Streaming Analyzers ONLY).

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 1..Nchan

name ViConstString ASCII string that specifies options
“odITxBitRate” is currently the only one used

value ViConstString | For “odITxBitRate” can have values like
“2.5G”,”2.125G”, or “1.0625G”

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_setAttributeString(ViSession instrumentliD,
Vilnt32 channel, ViConstString name,

ViConstString value);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Set Attribute String.vi

channel ———
Instrument ID gl

name =

walug =
Errorin (no errar)

dup Instrument 1D
Sk Atk error out

Visual Basic .NET Representation

Acqrs_setAttributeString (Byval instrumentiD As Int32, _
Byval channel As Int32, _
ByvVal name As String, _
Byval value As String) As Int32

MATLAB MEX Representation

[status] = Ag_setAttributeString (instrumentlD, channel, name, value)

Programmer’s Reference Manual Page 49 of 222

2.3.26 Acqrs_setLEDColor

Purpose

Sets the front panel LED to the desired color.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
color Vilnt32 0 = OFF (return to normal acquisition status indicator)
1 = Green
2 =Red
3 =Yellow
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_setLEDColor(ViSession instrumentlD,
Vilnt32 color);

LabVIEW Representation

Acqiris Bx.lvlib: (or Ag Bx) Set LED Color.vi

Instrument ID EZ dup Instrument ID
Color (D: OFF) - ad
grrar in (no errar) === aant errar out

Visual Basic .NET Representation

Acqrs_setLEDColor (ByVal instrumentlD As Int32, _
ByvVal color As Int32) As Int32

MATLAB MEX Representation

[status] = Aqg_setLEDColor(instrumentiD, color)

Programmer’s Reference Manual

Page 50 of 222

2.3.27 Acqrs_setSimulationOptions

Purpose

Sets one or several options which will be used by the function Acqrs_InitWithOptions, provided that the
optionsString supplied with that function contains the string "simulate=TRUE".

Parameters
Input
Name Type Description
simOptionString ViString String listing the desired simulation options. See
discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See the Programmer’s Guide section 3.2.10, Simulated Devices, for details on simulation. A string of the
form “M8M?” is used to set an 8 Mbyte simulated memory. The simulation options are reset to none by
setting simOptionString to an empty string "".

LabWindowsCVI/Visual C++ Representation

ViStatus status = Acqrs_setSimulationOptions(
ViString simOptionString);

LabVIEW Representation

Use Acqiris Bx.lvlib: (or Aq Bx) Initialize with Options.vi
Visual Basic .NET Representation

Acqrs_setSimulationOptions (ByVal simOptionString As String) _
As Int32

MATLAB MEX Representation

[status] = Ag_setSimulationOptions(simOptionsString)

Programmer’s Reference Manual Page 51 of 222

2.3.28 Acqrs_suspendControl

Purpose

Suspend control of an instrument to allow using it from another process. NOTE: This is only available for
Windows operating systems.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to chapter 2.1 in Programmer’s Reference
Manual for error codes.

Discussion

This function releases the driver lock of the instrument and prevents all further calls from the current
process. The error code ACQIRIS ERROR INVALID HANDLE is returned when calling functions on a
suspended instrument. Use Acqrs_resumeControl to reacquire the control of the instrument.

Once suspended, this instrument can be used from another process. However, if this is the first time this
other process is used, all desired acquisition settings must be defined and a calibration will be needed.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = Acqrs_suspendControl(ViSession instrumentlID);

LabVIEW Representation

Acqgiris Dx.Ivlib: (or Ag Dx) Suspend Control.vi

Instrument ID Fqll dup InskrumentID

etror in (nao errar) error auk

Visual Basic Representation

SuspendControl (ByVal instrumentlD As Long) As Long

Visual Basic .NET Representation

Acqrs_suspendControl (ByVal instrumentlD As Int32) As Int32
MATLAB MEX Representation

[status] = Ag_suspendControl (instrumentlD)

Programmer’s Reference Manual Page 52 of 222

2.3.29 AcqrsD1_accumulateData

Purpose

Returns a waveform as an array and accumulates it in a client array.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1..Nchan
readPar AqgReadParameters | Requested parameters for the acquired waveform.
QOutput
Name Type Description
dataArray ViAddr User-allocated waveform destination array of type char

or byte. Its size in dataType units MUST be at least
'nbrSamples' + 32, for reasons of data alignment.
sumArray Vilnt32 [] User-allocated waveform accumulation array. Its size
MUST be at least 'nbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion

below.
dataDesc AgDataDescriptor | Waveform descriptor structure.
segDescArray | ViAddr Segment descriptor structure.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function uses the AcqrsD1_readData routine. However, only 'readPar->nbrSegments = 1' and 'readPar-
>readMode = 0' (ReadModeStdW) are supported. 'readPar->dataType = 3' (real) and 'readPar->dataType =
2' (long) are NOT supported.

The sumArray contains the sample-by-sample sums. To get the average values, the array elements must be
divided by the number of accumulations performed. The sumArray can be interpreted as an unsigned
integer. Alternatively, negative values have to be increased by 2*%32,

The number of acquisitions, nbrAcq, can be at most 16777216 for 'readPar->dataType = 0' (char) or 65536
for 'readPar->dataType = 1' (short). This is to avoid an overflow where the summed values will wrap around
0.

The value in Volts of a data point data in the returned dataArray can be computed with the formula:

V = dataDesc.vGain * data — dataDesc.vOffset

Programmer’s Reference Manual Page 53 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus AcgrsD1_accumulateData (ViSession instrumentlD,
Vilnt32 channel, AgReadParameters* readPar,
void* dataArray, Vilnt32 sumArray|[], AgDataDescriptor*
dataDesc,

void* segDescArray);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Accumulate Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I8 or 116.

segheschrray in =
channel
Instrument 10 Pl dup Instrument 10
readPar lil L= B dakaDesc
SUrmArTay in - seqDescArray ouk
datafrray in —I_ j surndrray ouk
errar in (no error) error auk

dakafrray out

Visual Basic Representation

AccumulateData (ByVal instrumentlD As Long, _
Byval channel As Long, _
readPar As AgReadParameters, _
dataArray As Any,
sumArray As Long, _
dataDesc As AqgDataDescriptor, _
segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsD1_accumulateData (ByVal instrumentlD As Int32, _
ByVal channel As Int32, _
ByRef readPar As AgReadParameters, _
ByRef dataArray As Byte, _
ByRef sumArray As Int32, _
ByRef dataDesc As AqgDataDescriptor, _
ByRef segDescArray As AgSegmentDescriptor) As Int32

MATLAB MEX Representation

[status dataDesc segDescArray dataArray sumArray]=
AgD1_accumulateData(instrumentlD, channel, readPar)

Note: The older form Aq_accumulateData is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 54 of 222

2.3.30 AcqrsD1_acqDone

Purpose

Checks if the acquisition has terminated.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
done ViBoolean done = VI_TRUE if the acquisition is terminated
VI FALSE otherwise

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_acqDone(ViSession instrumentliD,
ViBoolean* done);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Acquisition Status.vi

Instrument ID - dup Instrumerit I0
; éucry DDI-IE?
errar in {no error) babiz Bicior i

Visual Basic Representation

AcqDone (ByVal instrumentlD As Long, done As Boolean) As Long
Visual Basic .NET Representation

AcqrsD1_acqbone (ByVval instrumentlD As Int32, _
ByRef done As Boolean) As Int32

MATLAB MEX Representation

[status done]= AgD1_acqgDone(instrumentiD)

Note: The older form Aq_acqDone is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 55 of 222

2.3.31 AcqrsD1_acquire

Purpose

Starts an acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_acquire(ViSession instrumentliD);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Start Acquisition.vi

Instrument ID b dup Instrument ID
acquireMode _I——' = i F
acquireFlags ﬂ Etart SRR

errar in (no error)

Visual Basic Representation

Acquire (Byval instrumentlD As Long) As Long

Visual Basic .NET Representation

AcqrsD1_acquire (ByVal instrumentID As Int32) As Int32
MATLAB MEX Representation

[status]= AgD1_acquire(instrumentiD)

Note: The older form Ag_acquire is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 56 of 222

2.3.32 AcqrsD1_acquireEx

Purpose

Starts an acquisition.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

acquireMode Vilnt32 =0, normal
= 2, continue to accumulate (AP Averagers only)

acquireFlags Vilnt32 =0, normal
= 4, resets the time stamp counter (U1071A & 10-bit-
Family only)

acquireParams Vilnt32 Parameters, currently not used

reserved Vilnt32 Currently not used

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_acquireEx(ViSession instrumentlD ,

Vilnt32 acquireMode, Vilnt32 acquireFlags, Vilnt32
acquireParams, Vilnt32 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Start Acquisition.vi
gD

Instrument ID

dup Instrurment 1D
acquireMode _I——' I, | Errlzr auk
acguireFlags ﬂ st
Errar in (no error)

Visual Basic Representation

AcquireEx (ByVal instrumentlD As Long, ByVal acquireMode As Long, _
ByVal acquireFlags As Long, ByVal acquireParams As Long, _
ByVal reserved As Long) As Long

Visual Basic .NET Representation

AcqrsD1_acquirekEx (ByVal instrumentlD As Int32, _
ByVal acquireMode As Int32, ByVal acquireFlags As Int32, _
Byval acquireParams As Int32, ByVal reserved As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1 acquireEx(instrumentlD, acquireMode, acquireFlags,
acquireParams, reserved)

Note: The older form Ag_acquireEx is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 57 of 222

2.3.33 AcqrsD1_averagedData

Purpose

This function is intended for single instrument, single channel operation.

Perform a series of acquisitions and get the resulting averaged waveform.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1..Nchan
readPar AgReadParameters | Requested parameters for the acquired waveform
nbrAcq Vilnt32 Number of acquisitions to be performed.
calculateMean | ViBoolean TRUE to divide the sumArray by nbrAcq to get the
mean values.
FALSE to leave the sample-by-sample sums in the
sumArray.
timeout ViReal64 Acquisition timeout in seconds. The function will
return an error if, for each acquisition, no trigger
arrives within the specified timeout after the start of the
acquisition.
The minimum value is 1 ms.
Output
Name Type Description
dataArray ViAddr User-allocated waveform destination array of type char
or byte. Its size in dataType units MUST be at least
'nbrSamples' + 32, for reasons of data alignment.
sumArray Vilnt32 [] User-allocated waveform accumulation array. Its size
MUST be at least 'nbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
below.
dataDesc AgDataDescriptor | Waveform descriptor structure. The returned values
will be those of the last acquisition
segDescArray | ViAddr Segment descriptor structure. The returned values will
be those of the last acquisition.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual

Page 58 of 222

Discussion

Because the acquisition control loop is done inside this function, it is suitable only for single instrument,
single channel operation.

This function uses the AcqrsD1_readData routine. However, only 'readPar->nbrSegments = 1' and 'readPar-
>readMode = 0' (ReadModeStdW) are supported. 'readPar->dataType = 3' (real) and 'readPar->dataType =
2' (long) are NOT supported.

The sumArray contains either the average values (calculateMean = TRUE), or the sample-by-sample sums
(calculateMean = FALSE). Note that, in the latter case, the sumArray can be interpreted as an unsigned
integer. Alternatively, negative values have to be increased by 2*%32,

The number of acquisitions, nbrAcq, can be at most 16777216 for 'readPar->dataType = 0' (char) or 65536

for 'readPar->dataType = 1' (short). This is to avoid an overflow where the summed values will wrap around
0.

The value in Volts of a data point data in the returned waveformArray or normalized sumArray can be
computed with the formula:

V = dataDesc.vGain * data — dataDesc.vOffset

The function will return ACQIRIS ERROR _ACQ_TIMEOUT if there is no trigger within the specified
timeout interval after the start of each acquisition.

LabWindowsCVI1/Visual C++ Representation

ViStatus AcqgrsDl1_averagedData(ViSession instrumentliD,

Vilnt32 channel, AgReadParameters* readPar, Vilnt32
nbrAcq, Vilnt8 calculateMean,

ViReal64 timeout,

void* dataArray, Vilnt32 sumArray[], AgDataDescriptor*
dataDesc,

void* segDescArray);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Averaged Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I8 or I16.

seqlescArray in

channel
Instrument ID Bl dup Inskrument 1D
readPar = AV; E B abaDesc
-

avaParams mlﬂ
sUrArray in |

datafrray in

I_ seqDescArray out
E sumarray ouk
error ouk

Error in {no error)

Programmer’s Reference Manual

datafrray ouk

Page 59 of 222

Visual Basic Representation

AveragedData (ByVal instrumentlD As Long, _
ByvVal channel As Long, _
readPar As AgReadParameters, _
Byval nbrAcq As Long, _
ByVal calculateMean As Boolean, _
Byval timeout As Double, _
dataArray As Any, _
sumArray As Long, _
dataDesc As AqgDataDescriptor, _
segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsD1_averagedData (ByVal instrumentlD As Int32, _
ByvVal channel As Int32, _
ByRef readPar As AgReadParameters, _
ByVal nbrAcq As Int32, _
Byval calculateMean As Boolean, _
Byval timeout As Double, _
ByRef dataArray As Byte,
ByRef sumArray As Int32, _
ByRef dataDesc As AqgDataDescriptor, _
ByRef segDescArray As AgSegmentDescriptor) As Int32

MATLAB MEX Representation

[status dataDesc segDescArray dataArray sumArray]=

AgD1_averagedData(instrumentlD, channel, readPar, nbrAcq,
calculateMean, timeout)

Note: The older form Agq_averagedData is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 60 of 222

2.3.34 AcqrsD1_bestNominalSamples

Purpose

Helper function to simplify digitizer configuration. It returns the maximum nominal number of samples that
fit into the available memory.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
nomSamples Vilnt32 Maximum number of data samples available

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

When using this method, make sure to use AcqrsD1_configHorizontal and AcqrsD1_configMemory
beforehand to set the sampling rate and the number of segments to the desired values (nbrSamples in
AcqrsD1_configMemory may be any number!). AcqrsD1_bestNominalSamples depends on these
variables.

Programmer’s Reference Manual Page 61 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_bestNominalSamples(ViSession instrumentlD,

Vilnt32* nomSamples);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Best Nominal Samples.vi

Instrument ID Al dup Instrument ID
_ ey L Maminal Samples
Errorin (no errar) Eust e ah

Visual Basic Representation

BestNominalSamples (ByVal instrumentlD As Long, _
nomSamples As Long) As Long

Visual Basic .NET Representation

AcqrsD1_bestNominalSamples (ByVal instrumentID As Int32, _

ByRef nomSamples As Int32) As Int32

MATLAB MEX Representation

[status nomSamples]= AgD1_ bestNominalSamples(instrumentlD)

Note: The older form Ag_bestNominalSamples is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual

Page 62 of 222

2.3.35 AcqrsD1_bestSamplInterval

Purpose

Helper function to simplify digitizer configuration. It returns the best possible sampling rate for an
acquisition, which covers the timeWindow with no more than maxSamples. The calculation takes into
account the requested state of the instrument, in particular the requested number of segments. In addition,
this routine returns the "real" nominal number of samples that can be accommodated (it is computed as
timeWindow/samplingInterval!).

Parameters

Input

Name Type Description
instrumentID ViSession Instrument identifier
maxSamples Vilnt32 Maximum number of samples to be used
timeWindow ViReal64 Time window to be covered, in seconds
Output

Name Type Description
samplnterval ViReal64 Recommended sampling interval in seconds
nomSamples Vilnt32 Recommended number of data samples

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns the value status = ACQIRIS ERROR_SETUP_NOT_ AVAILABLE when the available
memory is too short, and the longest available sampling interval too short. The returned sampling interval is
the longest one possible. It returns VI_SUCCESS when a good solution has been found.

NOTE: This function does not modify the state of the digitizer at all. It simply returns a recommendation
that the user is free to override.

NOTE: When using this method, make sure to use AcqrsD1_configMemory beforehand to set the number
of segments to the desired value (nbrSamples may be any number!). AcqrsD1_bestSampInterval depends
on this variable.

NOTE: The returned "recommended" values for the sampling interval samplnterval and the nominal
number of samples nomSamples are expected to be used for configuring the instrument with calls to
AcqrsD1_configMemory and AcqrsD1_configHorizontal. Make sure to use the same number of segments
in this second call to AcqrsD1_configMemory, as in the first one.

Programmer’s Reference Manual Page 63 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_bestSamplnterval (ViSession instrumentlD, Vilnt32
maxSamples, ViReal64 timeWindow,
ViReal64* samplnterval, Vilnt32* nomSamples);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Best Sampling Interval.vi

Instrument ID Al dup Instrument 1D
Maxinmum Samples (10000) -, i - Mominal Samples

Time Window {1E-6 5) ;_jm:ﬂsﬂ ot E - Sampling Interyal (51

error in (no error) error ouk

Visual Basic Representation

BestSamplInterval (ByVal instrumentlD As Long, _
Byval maxSamples As Long, _
Byval timeWindow As Double, _
samplInterval As Double, _
nomSamples As Long) As Long

Visual Representation

AcqrsD1_bestSamplInterval (ByvVal instrumentlD As Int32, _
ByVal maxSamples As Int32, _
Byval timeWindow As Double, _
ByRef samplnterval As Double, _
ByRef nomSamples As Int32) As Int32

MATLAB MEX Representation

[status sampinterval nomSamples]= AgD1_ bestSamplnterval (instrumentliD,
maxSamples, timeWindow)

Note: The older form Ag_bestSamplnterval is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 64 of 222

2.3.36 AcqrsD1_calibrate (DEPRECATED)

Purpose

Performs an auto-calibration of the instrument. See Acqrs_calibrate.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

LabVIEW Representation

Please refer to Acqrs_calibrate

Visual Basic Representation

Calibrate (ByVval

Visual Basic .NET Representation

AcqrsD1_calibrate (Byval

MATLAB MEX Representation

AcqrsD1_calibrate(ViSession instrumentlD);

instrumentlD As Long) As Long

instrumentlID As Int32) As Int32

[status]= Aq_calibrate(instrumentiD)

Programmer’s Reference Manual

Page 65 of 222

2.3.37 AcqrsD1_calibrateEx (DEPRECATED)

Purpose

Performs a (partial) auto-calibration of the instrument. See Acqrs_calibrateEx

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
calType Vilnt32 = 0 calibrate the entire instrument

= 1 calibrate only the current channel configuration
= 2 calibrate external clock timing. Requires operation
in External Clock (Continuous).
= 3 calibrate only at the current frequency
(12-bit-FAMILY, only)
= 4 fast calibration for current settings only
modifier Vilnt32 For calType = 0,1, or 2: Currently unused, set to “0”
For calType = 3 or 4, 0 = calibrate for all channels
n = calibrate for channel "n"
flags Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion
Calling this function with calType = 0 is equivalent to calling AcqrsD1_calibrate.

Calibrating with calType = 1 reduces the calibration time in digitizers with many possible channel
combinations, e.g. the DC271. However, the user must keep track of which channel combinations were
calibrated, and request another such partial calibration when changing the channel configuration with the
function AcqrsD1_configChannelCombination.

Calibrating with calType = 2 can only be done if the external input frequency is appropriately high. See the
discussion in the Programmer's Guide section 3.16.2, External Clock (Continuous). If the calibration
cannot be done an error code will be returned. It is not applicable for AP240 Signal Analyzer Platforms.

Calibrating with calType = 3 is for 12-bit digitizers only and is needed to support the HRes SR
functionality. For best results it, or the longer full calibration, should be called after a change of sampling
rate.

Calibrating with calType = 4 is for DC135, DC140, DC211A, DC241A, DC271A, DC271AR and 10-bit-
FAMILY models. A new calibration should be done if the AcqrsD1 configChannelCombination
parameters or any of the following AcqrsD1 configVertical parameters are changed: fullScale, coupling
(impedance), bandwidth, channel. This calibration will be much faster than the calType = 0 case for models
with more than one impedance setting. It will use the new values that have been asked for.

Programmer’s Reference Manual Page 66 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_calibrateEx(ViSession instrumentliD,
Vilnt32 calType, Vilnt32 modifier, Vilnt32 flags);

LabVIEW Representation

See Acqrs_calibrateEx

Visual Basic Representation

CalibrateEx (Byval instrumentlD As Long, _
Byval calType As Long, _
ByVal modifier As Long, _
Byval flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_calibrateEx (ByVal instrumentlD As Int32, _
Byval calType As Int32, _
ByVal modifier As Int32, _
Byval flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrateEx(instrumentlD, calType, modifier, flags)

Programmer’s Reference Manual Page 67 of 222

2.3.38 AcqrsD1_close (DEPRECATED)

Purpose

Closes an instrument. See Acqrs_close

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

Close the specified instrument. Once closed, this instrument is not available anymore and needs to be reenabled
using 'TnitWithOptions' or 'init'".

For freeing properly all resources, 'closeAll' must still be called when the application closes, even if 'close' was called
for each instrument.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1l_close(void);

LabVIEW Representation

See Acqrs_close
Visual Basic Representation

Close(ByVal instrumentlD As Long) As Long

Visual Basic .NET Representation

AcqrsD1_close (ByVval instrumentiD As Int32) As Int32
MATLAB MEX Representation

[status]= Aq_close(instrumentlD)

Programmer’s Reference Manual Page 68 of 222

2.3.39 AcqrsD1_closeAll (DEPRECATED)

Purpose

Closes all instruments in preparation for closing the application. See Acqrs_closeAll

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function should be the last call to the driver, before closing an application. Make sure to stop all
instruments beforehand.

If this function is not called, closing the application might crash the computer in some situations,
particularly in multi-threaded applications.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_closeAll(void);

LabVIEW Representation

See Acqrs_closeAll.
Visual Basic Representation

CloseAll () As Long

Visual Basic .NET Representation

AcqrsD1 _closeAll () As Int32
MATLAB MEX Representation

[status]= Aq_closeAll()

Programmer’s Reference Manual Page 69 of 222

2.3.40 AcqrsD1_configAvgConfig

Purpose

Configures a parameter for averager/analyzer operation.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channelNbr Vilnt32 Channel number. A value = 0 will be treated as =1 for
compatibility.
parameterString ViString Character string defining the requested parameter.
See below for the list of accepted strings.
value ViAddr Value to set. VIAddr resolves to void™ in C/C++. The
user must allocate the appropriate variable type (as listed
below), set it to the requested value and supply its address
as 'value'.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Accepted Parameter Strings
Parameter String Data Description

Type

Range of offset dithering, in ADC LSB’s. May assume
"DitherRange" Vilnt32 values v=0, 1...15. The offset is dithered over the range
[-v, + v] in steps of ~1/8 LSB. For Averagers ONLY.
For Threshold Gate type in AP240/AP235 Analyzers and
Peak™" ONLY.
Number of samples transmitted for each point over
threshold. It must be a multiple of 4. 0 = No limit imposed.
For AP240/AP235 Analyzers and Peak'™™ ONLY.
"GateType" Vilnt32 1 = User Gates
2 = Threshold Gates
For AP240/AP235 Averagers ONLY.
"HistoTDCEnable" Vilnt32 May assume 0 for not enabled and
1 to enable the simple TDC mode for the channel

May assume 0 (no inversion) and

"FixedSamples" Vilnt32

"InvertData" Vilnt32 . .
1 (invert data, 1’s complement).
For Threshold Gate type in AP240/AP235 Analyzers and
TDC
"NbrMaxGates" Vilngzz | DeaK W ONLY.

Maximum number of gates allowed for each segment.

0 = No limit imposed
Number of data samples per waveform segment. May
"NbrSamples" Vilnt32 assume values between 16 or 32 and the available memory
length, in multiples of 16 (32) as explained below.
Number of waveform segments to acquire. May assume
values between 1 and 8192.
Number of waveforms to average before going to next
"NbrWaveforms" Vilnt32 segment. May assume values between 1 and 65535 (64K —
1). For Averagers ONLY.
Number of times to perform the full segment cycle during

"NbrSegments" Vilnt32

"NbrRoundRobins" Vilnt32 data accumulation. For AP240/AP235 Averagers and
Peak™ ONLY.
May assume 0 (no base subtraction) and 1 (base subtraction
"NoiseBaseEnable" Vilnt32 enabled). It can only be enabled if the threshold is enabled.
For Averagers ONLY.

Programmer’s Reference Manual Page 70 of 222

Parameter String Data Description
Type
N " . Value in Volts of the value to be added in Noise Supressed
NoiseBase ViReal64 Averaging. For Averagers ONLY.
May assume 0 = not enabled
For AP240/AP235 Averagers ONLY.
1 = addSub channel 1
2 = addSub channel 2
"P1Control" Vilnt32 3 B addSub channel 1 +2
4 = average trigger enable
5 = start veto enable
6 = average (out)
For AP240/AP235 SSR ONLY.
1 = Timestamp reset enable
May assume 0 = not enabled
For AP240/AP235 Averagers ONLY.
1 = addSub channel 1
2 = addSub channel 2
"P2Control" Vilnt32 3 =addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)
For AP240/AP235 SSR ONLY.
1 = Timestamp reset enable
For AP240/AP235 SSR and Peak ™ Analyzers in
Threshold Gate mode. Used to guarantee a number of
"PostSamples" Vilnt32 samples after the last one satisfying the threshold condition.
The meaningful values are 0,4,8,12,16. Other values will be
rounded up or adapted appropriately.
For AP240/AP235 SSR and Peak ™ Analyzers in
Threshold Gate mode. Used to guarantee a number of
"PreSamples" Vilnt32 samp.lgs before the first one satisfying the threshold
condition.
The meaningful values are 0,4,8,12,16. Other values will
be rounded up or adapted appropriately.
Start delay in samples. May assume values between 0 and
"StartDelay" Vilnt32 33554400(16777216) in steps of 16 (32) as explained
below. The limit is StepSize*(1024*1024-1).
" ") Negative excursion needed before searching for negative
StartDeltaNegPeak Vilnt32 | peak. For AP101/AP201 Analyzers ONLY.
Positive excursion needed before searching for positive
"StartDeltaPosPeak" ViInt32 | peak. May assume values between 1 and Oxff. For
AP101/AP201 Analyzers ONLY.
Positive excursion needed before searching for positive
"StartDeltaPosPeakV" ViReal64 | peak. Must be positive. For Peak™° mode Analyzers
ONLY.
For AP100/AP200 Averagers ONLY
May assume 0 = for trigger enable functionality
"StartVetoEnable" Vilnt32 and 1 = use high state of I/O signal to allow the
average accumulation to start. Must be used in conjunction
with AcqrsD1_configControllO.
Stop delay in samples. May assume values between 0 and
"StopDelay " Vilnt32 1048560 (20971201048560) in steps of of 16 (32) as
explained below. The limit is StepSize*(64*1024-1)
The depth of the histogram for Peak ™ mode.
"TdcHistogramDepth" Vilnt32 | 0 means 16-bit accumulation bins.
1 means 32-bit accumulation bins.
The horizontal resolution of the histogram for interpolated
peaks in the Peak ™ mode.
"TdcHistogramHorzRes" Viln32 0 means that each bin corresponds to a sampling interval.

<4 means that each bin corresponds to 2**n of a sampling
interval.

Programmer’s Reference Manual

Page 71 of 222

Parameter String Data Description
Type

The desired increment to be applied for each entry;
1 means increment by 1, for SimpleTDC Averager and
Peak ™ Analyzer modes ONLY.
2 means increment by the ADCvalue — NoiseBase for a
SimpleTDC Averager
and by the ADCvalue for the Peak™ Analyzer

"TdcHistogramIncrement" | v/i[nt32

The type of histogram for Peak ™ mode ONLY.

0 means no histogram. Data only is available for each
acquisition.

1 for a histogram.

"TdcHistogramMode" Vilnt32

The vertical resolution of the histogram for interpolated
peaks when the TDCHistogramIncrement is 2 in the
Peak™° mode.

0 means that each bin corresponds to a sampling interval.
<4 means that each bin corresponds to /2**n of a sampling
interval.

"TdcHistogramVertRes" Vilnt32

The desired minimum width of a peak in the waveform;

It can take on a value (n) from 1 to 4. A peak is accepted if
there are at least n consecutive data samples above the
Threshold. For SimpleTDC mode ONLY.

"TdecMinTOT" Vilnt32

This option controls the horizontal binning of data in the

Peak™® histogram mode.

0 means that each segment will be histogrammed
independently.

1 means that all segments will be histogrammed on a
common time axis.

"TdcOverlaySegments" Vilnt32

k™ mode peak finding.

The desired processing for Peal
May assume

0 =No processing
"TdcProcessType™ Vilnt32 1 = Standard peak finding (no interpolation)

2 = Interpolated peaks

3 = 8 sample peak regions for data readout

4 = 16 sample peak regions for data readout
May assume 0 (no threshold) and 1 (threshold enabled). For
Averagers ONLY.
Value in Volts of the threshold for Noise Supressed
Averaging or for SSR or Peak ™™ with Threshold Gates.
May assume 0 (no trigger output) and 1 (trigger output on),
in the case of no acquisition.
Trigger timeout in units of 30 ns in the range [0,2% - 1].
A value of 0 means that no trigger will be generated and no
Prepare for Trigger signal will be needed. For
AP101/AP201 ONLY.
May assume 0 (no resync), 1 (resync) and 2 (free run)

"ThresholdEnable" Vilnt32

"Threshold" ViReal64

"TrigAlways" Vilnt32

"TriggerTimeout" Vilnt32

"TrigResync" Vilnt32

Positive excursion needed to validate a negative peak. May
"ValidDeltaNegPeak" Vilnt32 | assume values between 1 and 0xff. For AP101/AP201
ONLY.

Negative excursion needed to validate a positive peak. May
"ValidDeltaPosPeak" Vilnt32 | assume values between 1 and 0xff. For AP101/AP201
ONLY.

Negative excursion needed to validate a positive peak. Must
be positive. For Peak ™ mode Analyzers ONLY.

"ValidDeltaPosPeakV" ViReal64

Discussion

The "TrigResync" values 0 and 1 require a valid trigger, while 2 requires no trigger (useful for background
acquisition).

Set NbrWaveforms to 1 and NbrRoundRobins to n order to enable the round-robin segment acquisition
mode with n triggers for each segment.

Programmer’s Reference Manual Page 72 of 222

The channelNbr is used to designate the channel number for those parameters whose values can be different
for the two channels of an AP240/AP235 in dual-channel mode. These parameters are indicated in bold in
the list above.

The granularity for "NbrSamples","StartDelay", and "StopDelay" is 16 for the AP100/AP101 and the
AP240/AP235 in Dual-Channel mode and 32 for the AP200/AP201 and the AP240/AP235 in Single-
Channel mode.

If P1Control and/or P2Control are enabled for the Add/Subtract mode then the data will be added if the
signal, or the or of both signals, is in the high state. The same rule holds if they are used for trigger enable.

The P1Control/P2Control "average (out)" signal goes high after the first trigger is accepted for an average
and drops back down when the last trigger's acquition is complete.

Example
long channelNbr = 0, dither = 8;
AcqrsD1_configAvgConfig(lD, channelNbr, "DitherRange', &dither);

This function sets the dithering range to = 8 LSB’s.

Note that this function takes the address, not the value of the parameter to be set.

Programmer’s Reference Manual Page 73 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfig(ViSession instrumentliD,
Vilnt32 channelNbr, ViString parameterString, ViAddr
value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Agq Dx) Extended Configure Averager.vi
This Vi is polymorphic, the value can be either 132 or DBL.

Instrument ID ——

Channel Number A dup Instrument I0
Paramekber String =] aEs arrat auk

¥alue —
Errar in (no errar)

Visual Basic Representation

ConfigAvgConfig (Byval instrumentlD As Long, _
Byval channelNbr As Long, _
ByVal parameterString As String, _
value As Any) As Long

Visual Basic .NET Representation

AcqrsD1_configAvgConfig (ByVval instrumentlD As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByRef value As Int32) As Int32

or

AcqrsD1_configAvgConfig (ByVval instrumentlD As Int32, _
ByVal channelNbr As Int32, _

ByVal parameterString As String, _
ByRef value As Double) As Int32

MATLAB MEX Representation

Note: Please see AgD1_configAvgConfigInt32 and AgD1_configAvgConfigReal64.

Programmer’s Reference Manual Page 74 of 222

2.3.41 AcqrsD1_configAvgConfigInt32

Purpose

Configures a long parameter for averager/analyzer operation.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channelNbr Vilnt32 Channel number. A value = 0 will be treated as =1 for
compatibility.
parameterString ViString Character string defining the requested parameter.
See below for the list of accepted strings.
value Vilnt32 Value to set.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Accepted Parameter Strings
Parameter String Data Description

Type

Range of offset dithering, in ADC LSB’s. May assume
"DitherRange" Vilnt32 values v=0, 1...15. The offset is dithered over the range

[-v, + v] in steps of ~1/8 LSB. For Averagers ONLY.
For Threshold Gate type in AP240/AP235 Analyzers and
Peak™" ONLY.
Number of samples transmitted for each point over
threshold. It must be a multiple of 4. 0 = No limit imposed.
For AP240/AP235 Analyzers and Peak'™™ ONLY.
"GateType" Vilnt32 1 = User Gates

2 = Threshold Gates
For AP240/AP235 Averagers ONLY.
"HistoTDCEnable" Vilnt32 May assume 0 for not enabled and
1 to enable the simple TDC mode for the channel

May assume 0 (no inversion) and

"FixedSamples" Vilnt32

"InvertData" Vilnt32 . ,
1 (invert data, 1’s complement).
For Threshold Gate type in AP240/AP235 Analyzers and
TDC
"NbrMaxGates" Vilngz | FeaK T ONLY.

Maximum number of gates allowed for each segment.

0 = No limit imposed
Number of data samples per waveform segment. May
"NbrSamples" Vilnt32 assume values between 16 or 32 and the available memory
length, in multiples of 16 (32) as explained below.
Number of waveform segments to acquire. May assume
values between 1 and 8192.
Number of waveforms to average before going to next
"NbrWaveforms" Vilnt32 segment. May assume values between 1 and 65535 (64K —
1). For Averagers ONLY.
Number of times to perform the full segment cycle during
"NbrRoundRobins" Vilnt32 data accumulation. For AP240/AP235 Averagers and
Peak™ ONLY.
May assume 0 (no base subtraction) and 1 (base subtraction
enabled). It can only be enabled if the threshold is enabled.
For Averagers ONLY.

"NbrSegments" Vilnt32

"NoiseBaseEnable" Vilnt32

Programmer’s Reference Manual Page 75 of 222

Parameter String

Data
Type

Description

"P1Control"

Vilnt32

May assume 0 = not enabled
For AP240/AP235 Averagers ONLY.
1 = addSub channel 1
2 = addSub channel 2
3 =addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)
For AP240/AP235 SSR ONLY.
1 = Timestamp reset enable

"P2Control"

Vilnt32

May assume 0 = not enabled
For AP240/AP235 Averagers ONLY.
1 = addSub channel 1
2 = addSub channel 2
3 =addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)
For AP240/AP235 SSR ONLY.
1 = Timestamp reset enable

"PostSamples"

Vilnt32

For AP240/AP235 SSR and Peak ™™ Analyzers in
Threshold Gate mode. Used to guarantee a number of
samples after the last one satisfying the threshold condition.
The meaningful values are 0,4,8,12,16. Other values will be
rounded up or adapted appropriately.

"PreSamples"

Vilnt32

For AP240/AP235 SSR and Peak ™ Analyzers in
Threshold Gate mode. Used to guarantee a number of
samples before the first one satisfying the threshold
condition.

The meaningful values are 0,4,8,12,16. Other values will
be rounded up or adapted appropriately.

"StartDelay"

Vilnt32

Start delay in samples. May assume values between 0 and
33554400(16777216) in steps of 16 (32) as explained
below. The limit is StepSize*(1024*1024-1).

"StartDeltaNegPeak"

Vilnt32

Negative excursion needed before searching for negative
peak. For AP101/AP201 Analyzers ONLY.

"StartDeltaPosPeak"

Vilnt32

Positive excursion needed before searching for positive
peak. May assume values between 1 and 0xff. For
AP101/AP201 Analyzers ONLY.

"StartVetoEnable"

Vilnt32

For AP100/AP200 Averagers ONLY
May assume 0 = for trigger enable functionality

and 1 = use high state of I/O signal to allow the
average accumulation to start. Must be used in conjunction
with AcqrsD1_configControllO.

"StopDelay "

Vilnt32

Stop delay in samples. May assume values between 0 and
1048560 (20971201048560) in steps of of 16 (32) as
explained below. The limit is StepSize*(64*1024-1)

"TdcHistogramDepth"

Vilnt32

The depth of the histogram for Peak ™ mode.
0 means 16-bit accumulation bins.
1 means 32-bit accumulation bins.

"TdcHistogramHorzRes"

Vilnt32

The horizontal resolution of the histogram for interpolated
peaks in the Peak ™ mode.

0 means that each bin corresponds to a sampling interval.
<4 means that each bin corresponds to “2**n of a sampling
interval.

"TdcHistogramIncrement"

Vilnt32

The desired increment to be applied for each entry;
1 means increment by 1, for SimpleTDC Averager and
Peak™° Analyzer modes ONLY.
2 means increment by the ADCvalue — NoiseBase for a
SimpleTDC Averager
and by the ADCvalue for the Peak™ Analyzer

Programmer’s Reference Manual

Page 76 of 222

Parameter String

Data
Type

Description

"TdcHistogramMode"

Vilnt32

The type of histogram for Peak ™ mode ONLY.

0 means no histogram. Data only is available for each
acquisition.

1 for a histogram.

"TdcHistogramVertRes"

Vilnt32

The vertical resolution of the histogram for interpolated
peaks when the TDCHistogramIncrement is 2 in the
Peak™° mode.

0 means that each bin corresponds to a sampling interval.
<4 means that each bin corresponds to “2**n of a sampling
interval.

"TdeMinTOT"

Vilnt32

The desired minimum width of a peak in the waveform;

It can take on a value (n) from 1 to 4. A peak is accepted if
there are at least n consecutive data samples above the
Threshold. For SimpleTDC mode ONLY.

"TdcOverlaySegments"

Vilnt32

This option controls the horizontal binning of data in the

Peak ™ histogram mode.

0 means that each segment will be histogrammed
independently.

1 means that all segments will be histogrammed on a
common time axis.

"TdcProcessType"

Vilnt32

The desired processing for Peak ™ mode peak finding.
May assume

0 = No processing

1 = Standard peak finding (no interpolation)

2 = Interpolated peaks

3 = 8 sample peak regions for data readout

4 = 16 sample peak regions for data readout

"ThresholdEnable"

Vilnt32

May assume 0 (no threshold) and 1 (threshold enabled). For
Averagers ONLY.

"TrigAlways"

Vilnt32

May assume 0 (no trigger output) and 1 (trigger output on),
in the case of no acquisition.

"TriggerTimeout"

Vilnt32

Trigger timeout in units of 30 ns in the range [0,2% - 1].

A value of 0 means that no trigger will be generated and no
Prepare for Trigger signal will be needed. For
AP101/AP201 ONLY.

"TrigResync"

Vilnt32

May assume 0 (no resync), 1 (resync) and 2 (free run)

"ValidDeltaNegPeak"

Vilnt32

Positive excursion needed to validate a negative peak. May
assume values between 1 and 0xff. For AP101/AP201
ONLY.

"ValidDeltaPosPeak"

Vilnt32

Negative excursion needed to validate a positive peak. May
assume values between 1 and Oxff. For AP101/AP201
ONLY.

Discussion

The "TrigResync" values 0 and 1 require a valid trigger, while 2 requires no trigger (useful for background

acquisition).

Set NbrWaveforms to 1 and NbrRoundRobins to n order to enable the round-robin segment acquisition

mode with n triggers for each segment.

The channelNbr is used to designate the channel number for those parameters whose values can be different
for the two channels of an AP240/AP235 in dual-channel mode. These parameters are indicated in bold in

the list above.

The granularity for "NbrSamples","StartDelay", and "StopDelay" is 16 for the AP100/AP101 and the
AP240/AP235 in Dual-Channel mode and 32 for the AP200/AP201 and the AP240/AP235 in Single-

Channel mode.

Programmer’s Reference Manual

Page 77 of 222

If P1Control and/or P2Control are enabled for the Add/Subtract mode then the data will be added if the
signal, or the or of both signals, is in the high state. The same rule holds if they are used for trigger enable.

The P1Control/P2Control "average (out)" signal goes high after the first trigger is accepted for an average
and drops back down when the last trigger's acquition is complete.

Example

long channelNbr = 0, dither = 8;

AcgrsD1_configAvgConfigInt32(ID, channelNbr, "DitherRange™, dither);
This function sets the dithering range to = 8 LSB’s.

Note that this function takes value of the parameter to be set, not the the address.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfigInt32(ViSession instrumentliD,
Vilnt32 channelNbr, ViString parameterString,

Vilnt32 value);

LabVIEW Representation

Please use the Acqiris Dx.lvlib: (or Agq Dx) Extended Configure Averager.vi
described in AcqrsD1_configAvgConfig.

Visual Basic Representation

ConfigAvgConfigInt32 (ByVal instrumentlD As Long, _
ByvVal channelNbr As Long, _
ByVal parameterString As String, _
Byval value As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configAvgConfigInt32 (Byval instrumentlD As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
Byval value As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1l_configAvgConfiglint32(instrumentlD, channel, parameterString,
value)

Programmer’s Reference Manual Page 78 of 222

2.3.42 AcqrsD1_configAvgConfigReal64

Purpose

Configures a double parameter for averager/analyzer operation.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channelNbr Vilnt32 Channel number. A value = 0 will be treated as =1 for
compatibility.
parameterString ViString Character string defining the requested parameter.
See below for the list of accepted strings.
value ViReal64 Value to set.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Accepted Parameter Strings
Parameter String Data Description
Type
. . Value in Volts of the value to be added in Noise Supressed
" ”
NoiseBase ViReal64 Averaging. For Averagers ONLY.
Positive excursion needed before searching for positive
"StartDeltaPosPeakV" ViReal64 | peak. Must be positive. For Peak™ mode Analyzers
ONLY.
. Value in Volts of the threshold for Noise Supressed
" ”
Threshold ViReal64 | 4\ oraging or for SSR or Peak™ with Threshold Gates.
. Negative excursion needed to validate a positive peak. Must
" " .
ValidDeltaPosPeakV ViReal64 | pe positive. For Peak™C mode Analyzers ONLY.

Discussion

The channelNbr is used to designate the channel number for those parameters whose values can be different
for the two channels of an AP240/AP235 in dual-channel mode. These parameters are indicated in bold in
the list above.

Example
long channelNbr = 0;
double threshold = 0.8;
AcqrsD1_configAvgConfigReal64(ID, channelNbr, "DitherRange', double);

This function sets the NSA threshold to 0.8 V.

Note that this function takes the value of the parameter to be set, not the address.

Programmer’s Reference Manual Page 79 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_configAvgConfigReal64(ViSession instrumentliD,
Vilnt32 channelNbr, ViString parameterString,

ViReal64 value);

LabVIEW Representation

Please use the Acqgiris Dx.Ivlib: (or Ag Dx) Extended Configure Averager.vi
described in AcgrsD1_configAvgConfig.

Visual Basic Representation

ConfigAvgConfigReal64 (ByVal instrumentlD As Long, _
Byval channelNbr As Long, _
ByVal parameterString As String, _
Byval value As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configAvgConfigReal64 (ByVal instrumentlD As Int32, _
ByVal channelNbr As Int32, _
ByVal parameterString As String, _
ByVal value As Double) As Int32

MATLAB MEX Representation

[status]= AgD1_configAvgConfigReal64(instrumentlD, channel, parameterString,
value)

Programmer’s Reference Manual Page 80 of 222

2.3.43 AcqrsD1_configChannelCombination

Purpose

Configures how many converters are to be used for which channels. This routine is for use with some
DC271-FAMILY instruments, the 10-bit-FAMILY, the AC/SC240, and the AP240/AP235 Signal Analyzer

platforms.
Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

nbrConvertersPer | Vilnt32 =1 all channels use 1 converter each (default)

Channel =2 half of the channels use 2 converters each
=4 1/4 of the channels use 4 converters each

usedChannels Vilnt32 bit-field indicating which channels are used. See
discussion below

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion
The acceptable values for 'usedChannels' depend on 'nbrConvertersPerChannel' and on the number of
available channels in the digitizer:
A) If 'nbrConvertersPerChannel' = 1, 'usedChannels' must reflect the fact that ALL channels are available
for use. It accepts a single value for a given digitizer:
'usedChannels' = 0x00000001 if the digitizer has 1 channel
= 0x00000003 if the digitizer has 2 channels
=0x0000000f if the digitizer has 4 channels
B) If 'nbrConvertersPerChannel' = 2, 'usedChannels' must reflect the fact that only half of the channels may
be used:
'usedChannels' = 0x00000001 use channel 1 on a 2-channel digitizer
=0x00000002 use channel 2 on a 2-channel digitizer
=0x00000003 use channels 1+2 on a 4-channel digitizer
=0x00000005 use channels 1+3 on a 4-channel digitizer
=0x00000009 use channels 1+4 on a 4-channel digitizer
= 0x00000006 use channels 2+3 on a 4-channel digitizer
= 0x0000000a use channels 2+4 on a 4-channel digitizer
= 0x0000000c use channels 3+4 on a 4-channel digitizer
C) If 'nbrConvertersPerChannel' = 4, 'usedChannels' must reflect the fact that only 1 of the channels may be
used:
'usedChannels' = 0x00000001 use channel 1 on a 4-channel digitizer
=0x00000002 use channel 2 on a 4-channel digitizer
= 0x00000004 use channel 3 on a 4-channel digitizer
= 0x00000008 use channel 4 on a 4-channel digitizer
NOTE: Digitizers which don't support channel combination, always use the default
'nbrConvertersPerChannel' = 1, and the single possible value of 'usedChannels'
NOTE: Changing the channel combination doesn't change the names of the channels; they are always the
same.
NOTE: If digitizers are combined with AS bus, the channel combination applies equally to
all participating digitizers.

Programmer’s Reference Manual Page 81 of 222

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1l_configChannelCombination(
ViSession instrumentlD,
Vilnt32 nbrConvertersPerChannel,
Vilnt32 usedChannels);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Channel Combination.vi

Instrument ID premp dup Inskrument 10
nbrConvertersPer Channel — Confi -
o

n -k
usedChannels 2 e === errar out
Error in (no error) r===-ﬂ

Visual Basic Representation

ConfigChannelCombination (ByVal instrumentlD As Long, _
ByVal nbrConvertersPerChannel As Long, _
ByVal usedChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configChannelCombination (ByVal instrumentlD As Int32, _
ByVal nbrConvertersPerChannel As Int32, _
ByVal usedChannels As Int32) As Int32

MATLAB MEX Representation

[status]= AgD1_configChannelCombination(instrumentlD, nbrConvertersPerChannel,
usedChannels)

Note: The older form Ag_configChannelCombination is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 82 of 222

2.3.44 AcqrsD1_configControllO

Purpose

Configures a ControllO connector. (For DC271-FAMILY/AP-FAMILY/12-bit-FAMILY/10-bit FAMILY

and AC/SC only)
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
connector Vilnt32 Connector Number
1 = Front Panel /O A (MMCX connector)
2 = Front Panel I/O B (MMCX connector)
9 = Front Panel Trigger Out (MMCX connector)
11 = PXI Bus 10 MHz (DC135/DC140/DC211/
DC211A/DC241/DC241A/DC271/DC271A/
DC271AR/DC122/DC152/DC222/DC252/
DC282)
12 = PXI Bus Star Trigger (same models as above)
signal Vilnt32 The accepted values depend on the type of connector
See the table below for details.
qualifierl Vilnt32 The accepted values depend on the type of connector
See the table below for details.
qualifier2 ViReal64 If trigger veto functionality is available (AP101/AP201
only), accepts values between 30 ns and 1.0 sec. The
trigger veto values given will be rounded off to steps of
33 ns. A value of 0.0 means that no holdoff is required
and no Prepare for Trigger signal will be needed.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Accepted Values of signal vs. Connector Type

Connector Type

Possible Values of signal and gualifierX

Front Panel I/O

0 = Disable

Inputs:

6 = (Level) Enable trigger input (for Digitizers)
If one of the two 1/0 connectors is set to this value then a
high level must be present before an edge can be accepted.
If both I/O connectors are set to this value, they both must
be high before the trigger edge can be accepted.

6 = (Level) Enable trigger input or Start Veto (for AP100/AP200
Averagers) see AcqrsD1_configAvgConfig for more

8 = Prepare for Trigger signal present on this connector.
qualifier2 gives the desired holdoff in time.

9 = Gate signal for FC option totalize in gate functionality.

Outputs:

19 = (Clock) 10 MHz reference clock

20 = (Pulse) Acquisition skips to next segment (in sequence
acquisition mode) input
(Not for AP240/AP235 Signal Analyzers).

21 =(Level) Acquisition is active

22 =(Level) Trigger is armed (ready)

The values of qualifierl and qualifier2 are not used

Programmer’s Reference Manual Page 83 of 222

Connector Type Possible Values of signal and qualifierX
Front Panel Trigger Out | The value of signal is interpreted as a signal offset in mV.
E.g. signal = -500 offsets the output signal by =500 mV. The
accepted range of signal is [-2500,2500], i.e. £ 2.5 V with a
resolution of ~20 mV.
The value of qualifierl controls if the trigger output is
resynchronized to the clock or maintains a precise timing relation to
the trigger input.
qualifierl= 0 (default): Non-resynchronized
qualifierl= 1 : Resynchronized to sampling clock
PXI Bus 10 MHz 0 = Disable
1 = Enable
Replaces the internal 10 MHz reference clock with the 10 MHz
clock on the PXI rear panel connector.
PXI Bus Star Trigger 0 = Disable
1 = Use PXI Bus Star Trigger as Trigger Input
2 = Use PXI Bus Star Trigger for Trigger Output
Note: When using this connector as Trigger Input, you also must
set the trigger source in sourcePattern in the function
AcqrsD1_configTrigClass to External Trigger2!

Discussion

ControllO connectors are front panel 10 connectors for special purpose control functions of the digitizer.
Typical examples are user-controlled acquisition control (start/stop/skip) or control output signals such as
‘acquisition ready’ or ‘trigger ready’.

The connector numbers are limited to the allowed values. To find out which connectors are supported by a
given module, use the query function AcqrsD1_getControllO.

The variable signal specifies the (programmable) use of the specified connector.

In order to set /O A as a ‘Enable Trigger’ input and the I/O B as a 10 MHz reference output, use the
function calls

AcqrsD1_configControllO(instriD, 1, 6, 0, 0.0);
AcqrsD1_configControll1O(instriD, 2, 19, 0, 0.0);

In order to obtain a signal offset of +1.5 V on the Trigger Output, use the call
AcqrsD1_configControllO(instriD, 9, 1500, 0, 0.0);

Programmer’s Reference Manual Page 84 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_configControllO(ViSession instrumentlID, Vilnt32
connector, Vilnt32 signal,
Vilnt32 qualifierl, ViReal64 qualifier2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Control 10 Connectors.vi

Qualifier -
Qualifigrl ————— |
Instrument ID Al dup Instrurient I
Connector - ;
s 1 [y error aut

Signal
Error in (no error) '====ﬂ
Visual Basic Representation

ConfigControl 10 (ByVal instrumentlD As Long, _
ByVal connector As Long, _
Byval signal As Long, _
Byval qualifierl As Long, _
ByVal qualifier2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configControllO (ByVval instrumentlD As Int32, _
ByvVal connector As Int32, _
Byval signal As Int32, _
Byval qualifierl As Int32, _
ByVal qualifier2 As Double) As Int32

MATLAB MEX Representation

[status]= AqD1_configControll10(instrumentlD, connector, signal, qualifierl,
qualifier2)

Note: The older form Ag_configControllO is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 85 of 222

2.3.45 AcqrsD1_configExtClock

Purpose

Configures the external clock of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
clockType Vilnt32 =0 Internal Clock (default at start-up)
=1 External Clock, continuously running
=2 External Reference (10 MHz)
=4 External Clock, with start/stop sequence
inputThreshold ViReal64 Input threshold for external clock or reference in mV
delayNbrSamples | Vilnt32 Number of samples to acquire after trigger (for
digitizers using 'clockType' =1 only!)
inputFrequency ViReal64 The input frequency of the external clock, for
clockType = 1 only
sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 1
only
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

When clockType is set to 1 or 4, the parameters of the function AcqrsD1_configHorizontal are ignored!
Please refer to your product User Manual, for the conditions on the clock signals, and to the Programmer’s
Guide section 3.16, External Clock, for the setup parameters and the theory of operation.

Programmer’s Reference Manual Page 86 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configExtClock(ViSession instrumentlD, Vilnt32
clockType, ViReal64 inputThreshold, Vilnt32
delayNbrSamples, ViReal64 inputFrequency, ViReal64
sampFrequency) ;

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure External Clock.vi

Input Frequency (0 —

Instrument ID

ClockType {D: Internal) A

Falin dup Instrument 1D

B

Input Threshald {0} H

error in (no erfor) ===
Delay Number of Samples (00
Sampling Frequency (0

ekrar ouk

o
s
=

Visual Basic Representation

ConfigExtClock (Byval
Byval
ByVval
ByVval
ByVval
ByVval

instrumentlD As Long, _
clockType As Long, _
inputThreshold As Double, _
delayNbrSamples As Long, _
inputFrequency As Double, _
sampFrequency As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configExtClock (ByVal instrumentlD As Int32, _

ByVval
ByVval
Byval
ByVval
ByVval

clockType As Int32, _
inputThreshold As Double, _
delayNbrSamples As Int32, _
inputFrequency As Double, _
sampFrequency As Double) As Int32

MATLAB MEX Representation

[status]= AqD1_configExtClock(instrumentID, clockType,

delayNbrSamples,

Note: The older form Ag_configExtClock is deprecated.

Please convert to

Programmer’s Reference Manual

the newer version.

inputThreshold,
inputFrequency, sampFrequency)

Page 87 of 222

2.3.46 AcqrsD1_configFCounter

Purpose

Configures a frequency counter measurement

Parameters

Return Value

Input
Name Type Description
instrumentID ViSession Instrument identifier
signalChannel Vilnt32 Signal input channel
type Vilnt32 Type of measurement
=0 Frequency (default)
=1 Period (1/frequency)
=2 Totalize by Time
=3 Totalize by Gate
targetValue ViReal64 User-supplied estimate of the expected value, may be
0.0 if no estimate is available.
apertureTime ViReal64 Time in sec, during which the measurement is
executed, see discussion below.
reserved ViReal64 Currently ignored
flags Vilnt32 Currently ignored
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The Frequency mode (type = 0) measures the frequency of the signal applied to the selected ‘signalChannel’
during the aperture time. The default value of ‘apertureTime’ is 0.001 sec and can be set to any value
between 0.001 and 1000.0 seconds. A longer aperture time may improve the measurement accuracy, if the
(externally applied) reference clock has a high accuracy and/or if the signal slew rate is low.

The ‘targetValue’ is a user-supplied estimated of the expected result, and helps in choosing the optimal
measurement conditions. If the supplied value is < 1000.0, and > 0.0, then the instrument will not use the
HF trigger mode to divide the input frequency. Otherwise, it divides it by 4 in order to obtain a larger
frequency range.

The Period mode (type = 1) is equal to the frequency mode, but the function AcqrsD1_readFCounter
returns the inverse of the measured frequency. If the ‘targetValue’ is < 0.001 (1 ms), then the instrument
will not use the HF trigger mode, otherwise it does.

The Totalize by Time mode (type = 2) counts the number of pulses in the signal applied to the selected
‘signalChannel” during the time defined by ‘apertureTime’. The ‘targetValue’ is ignored.

The Totalize by Gate mode (type = 3) counts the number of pulses in the signal applied to the selected
‘signalChannel’ during the time defined by signal at the I/O A or I/O B inputs on the front panel. The gate is
open while the signal is high, and closed while the signal is low (if no signal is connected, counting will be
enabled, since there is an internal pull-up resistor). The gate may be opened/closed several times during the
measurement. The measurement must be terminated with the function AcqrsD1_stopAcquisition.

Programmer’s Reference Manual Page 88 of 222

LabWindowsCVI1/Visual

C++ Representation

ViStatus status = AcqrsD1_configFCounter(ViSession instrumentlD,

Vilnt32 sign
ViReal64 ape

LabVIEW Representatio

alChannel, Vilnt32 type, ViReal64 targetValue,
rtureTime,ViReal64 reserved, Vilnt32 flags);

n

AgDx Configure FCounter.vi

Instrument ID Al

dup Instrument 1D

Configure values “‘Bmﬂggfig.

arrar in (no error) ===l

errar ouk

Visual Basic Representat

ConfigFCounter (ByVal
Byval
ByVval
ByVval
Byval
ByVval
ByVval

Visual Basic .NET Repre

ion

instrumentlD As Long, _
signalChannel As Long, _
type As Long, _
targetValue As Double,
apertureTime As Double, _
reserved As Double, _
flags As Long) As Long

sentation

AcqrsD1_configFCounter (ByVal instrumentlD As Int32, _

ByVval
Byval
ByVval
ByVval
Byval
ByVval

MATLAB MEX Represe

signalChannel As Int32, _
type As Int32, _
targetValue As Double,

apertureTime As Double,
reserved As Double, _
flags As Int32) As Int32
ntation

[status]= AgD1 configFCounter(instrumentlD, signalChannel, typeMes,

targetValue, apertureTime, reserved, flags)

Note: The older form Aq_configFCounter is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual

Page 89 of 222

2.3.47 AcqrsD1_configHorizontal

Purpose

Configures the horizontal control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
samplnterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds, with respect to the

beginning of the record. A positive number
corresponds to a trigger before the beginning of the
record (post-trigger recording). A negative number
corresponds to pre-trigger recording. It can’t be less
than -(samplnterval * nbrSamples), which corresponds
to 100% pre-trigger.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Refer to the Programmer’s Guide section 3.12, Trigger Delay and Horizontal Waveform Position, for a
detailed discussion of the value delayTime.

Programmer’s Reference Manual Page 90 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configHorizontal (ViSession instrumentlD, ViReal64
samplnterval, ViReal64 delayTime);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Horizontal Settings.vi

Instrument ID Aal dup Instrument 1D
Sampling Interval {10 ns) - B
Delay Time §0s) — H L Horid | error auk

Error in {no errar)

Visual Basic Representation

ConfigHorizontal (ByVal instrumentlD As Long, _
ByvVal samplnterval As Double, _
ByVal delayTime As Double) As Long

Visual Basic .NET Representation

AcgrsD1_configHorizontal (ByVal instrumentlD As Int32, _
Byval samplnterval As Double, _
ByVal delayTime As Double) As Int32

MATLAB MEX Representation

[status]= AgD1_configHorizontal (instrumentlD, samplnterval, delayTime)

Note: The older form Ag_configHorizontal is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 91 of 222

2.3.48 AcqrsD1_configl.ogicDevice (DEPRECATED)

Purpose

Configures (programs) on-board
Acqrs_configLogicDevice.

logic devices, such as user-programmable FPGA’s.

See

NOTE: With the exception of AC and SC Analyzers, this function now needs to be used only by VxWorks
users to specify the filePath for FPGA .bit files. Otherwise it should no longer have to be used

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

deviceName ViChar [] Identifies which device to program
For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it can
be "ASBUS::n::Block1Dev1" with n ranging from 0
to the number of modules -1.
When clearing the FPGA?” s, the string must be
"Block1DevAll".

filePathName ViChar [] File path and file name

flags Vilnt32 flags, may be:
0 = program logic device with data in the file

“filePathName”
1 = clear the logic device
2 = set path where FPGA .bit files can be found
3 =0 + use normal search order with AqDrv4.ini file
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

With flags = 2 in VxWorks systems, the filePathName must point to a directory containing the FPGA

configuration files with extension ‘.bit’

With flags = 0 or 3, the filePathName must point to an FPGA configuration file with extension .bit’, e.g.
“D:\Averagers\FPGA\AP100DefaultFPGA1.bit”.
For more details on programming on-board logic devices, please refer to the Programmer’s Guide sections
3.2, Device Initialization and 3.3, Device Configuration.

Programmer’s Reference Manual

Page 92 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configLogicDevice(ViSession instrumentlD,
ViChar deviceName[], ViChar filePathName[],
Vilnt32 flags);

LabVIEW Representation

See Acqrs_configlLogicDevice
Visual Basic Representation

ConfiglLogicDevice (ByVal instrumentlD As Long, _
ByVal deviceName As String, _
Byval filePathName As String, _
ByVal modifier As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configlLogicDevice (ByVal instrumentlD As Int32, _
ByVal deviceName As String, _
Byval filePathName As String, _
ByVal modifier As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configlLogicDevice(instrumentlD, deviceName, filePathName, flags)

Programmer’s Reference Manual Page 93 of 222

2.3.49 AcqrsD1_configMemory

Purpose

Configures the memory control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
nbrSamples Vilnt32 Nominal number of samples to record (per segment!)
nbrSegments Vilnt32 Number of segments to acquire. 1 corresponds to the
normal single-trace acquisition mode.

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1l_configMemory(ViSession instrumentlD,
Vilnt32 nbrSamples, Vilnt32 nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Memory Settings.vi

Instrument ID Al | dup Instrurment ID
—]

Murmber of Segments (1) _l—é‘_.;.nﬁg_
—

Mumber of Samples {1000} Belem errar ook
Errorin (no error)

Visual Basic Representation

ConfigMemory (ByVal instrumentlD As Long, _
ByVal nbrSamples As Long, _
ByVal nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMemory (ByVal instrumentlD As Int32, _

ByVal nbrSamples As Int32, _
ByVal nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status]= AgD1l configMemory(instrumentlD, nbrSamples, nbrSegments)

Note: The older form Ag_configMemory is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual

Page 94 of 222

2.3.50 AcqrsD1_configMemoryEx

Purpose

Extended configuration of the memory control parameters of the digitizer including 10-bit-FAMILY &
U1071A-FAMILY SAR mode.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

nbrSamplesHi ViUInt32 Must be set to 0 (reserved for future use)

nbrSamplesLo ViUInt32 Nominal number of samples to record (per segment!)

nbrSegments Vilnt32 Number of segments to acquire. 1 corresponds to the
normal single-trace acquisition mode.

nbrBanks Vilnt32 Number of banks to be used for SAR mode

flags Vilnt32 = 0 default memory use
=1 force use of internal memory (for 10-bit-FAMILY
& U1071A-FAMILY digitizers with extended
memory options only).

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This routine is needed to access the new features of some of the digitizers (U1071A-FAMILY & 10-bit-
FAMILY).

The SAR mode should be activated by calling AcqrsD1_configMode with the appropriate flags value. The
desired number of banks should be set here with the nbrBanks > 1. If the unit has external memory the flags

parameter will also have to be set to 1.

In an instrument equipped with external memory, flags = 1 will force the use of internal memory which give
a lower dead time between segments of a sequence acquisition.

Programmer’s Reference Manual Page 95 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configMemoryEx(ViSession instrumentlD, ViUInt32

nbrSamplesHi, ViUlInt32 nbrSamplesLo, Vilnt32 nbrSegments,
Vilnt32 nbrBanks,

Vilnt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Configure Extended Memory Settings.vi

Flags
Instrument ID D dup Instrumnent ID
Number of Segments - R
Mumber of Samples J—I 1L errar auk
Number of Banks

Errar in (no error) seeeeeseoooees

Visual Basic Representation

ConfigMemoryEx (ByVal instrumentlD As Long,
ByVal nbrSamplesHi As Long, _
ByvVal nbrSamplesLo As Long, _
ByVal nbrSegments As Long, -
ByVal nbrBanks As Long, -
Byval flags As Long) As Long

Visual Basic .NET Representation

AcqgrsD1_configMemoryEx (ByvVal instrumentlD As Int32, _
ByvVal nbrSamplesHi As UInt32, _
ByVal nbrSamplesLo As UInt32, _
ByVal nbrSegments As Int32, -
ByVal nbrBanks As Int32, -
ByvVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= AgD1_configMemoryEx(instrumentlID, nbrSamplesHi, nbrSamplesLo,
nbrSegments, nbrBanks, flags)

Note: The older form Ag_configMemoryEx is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 96 of 222

2.3.51 AcqrsD1_configMode

Purpose

Configures the operational mode of Averagers and Analyzers and certain special Digitizer acquisition

modes
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
mode Vilnt32 0 = normal data acquisition
1 = AC/SC stream data to DPU
2 = averaging mode (only in real-time averagers)
3 = buffered data acquisition (only in AP101/AP201
analyzers)
5 = Peak ™ mode for Analyzers with this
option.
6 = frequency counter mode
7 = AP235/AP240-SSR mode
modifier Vilnt32 Currently not used, set to 0
flags Vilnt32 If ‘mode’ = 0, this variable can take these values:

0 = ‘normal’ (default value)

1 = “Start on Trigger’ mode

2 = ‘Sequence Wrap’ mode
10 = SAR mode

If ‘mode’ = 2, this variable is not used (set to 0).

For AP101/AP201 units, if ‘mode’ = 3, this variable
can take these values:

0 = acquire into 1** memory bank

1 = acquire into 2™ memory bank

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Most digitizers only permit the default mode = 0. Real-time averagers support the normal data acquisition
mode (0) and the averager mode (2). The analyzers (digitizers with buffered acquisition memory)
(AP101/AP201 and AP235/AP240 with SSR) support both the normal data acquisition mode (0) and the
buffered mode (3). AC/SC analyzers support both the normal data acquisition mode (0) and the stream data
to DPU mode (1).

The normal data acquisition mode (0) supports the following submodes:
e flags = 0: normal digitizer mode

o flags = 1: ‘StartOnTrigger’ mode, whereby data recording only begins after the receipt of a valid
trigger. For details, see Programmer’s Guide section 3.18, Special Operating Modes.

e flags = 2: ‘Sequence Wrap’ mode, whereby a multi-segment acquisition (with ‘nbrSegments’ > 1,
when configured with the function AcqrsD1_configMemory), does not stop after ‘nbrSegments’,
but wraps around to zero, indefinitely. Thus, such acquisitions must be stopped with the function
AcqrsD1_stopAcquisition at the appropriate moment. The digitizer memory then contains the last
(nbrSegments-1) waveform segments. For details, see Programmer’s Guide section 3.18, Special
Operating Modes.

Programmer’s Reference Manual Page 97 of 222

e flags = 10: SAR mode. This mode allows simultaneous data acquisition and readout and is
available on some models only. AcqrsD1_configMemoryEx must be used to set the desired
number of banks. When SAR mode is active any external memory present is not available.

The averaging mode (2) has the following differences from the default mode (0):

e The function AcqrsD1_acquire(): In mode 0, it starts a normal waveform acquisition, whereas in
mode 2, it makes the instrument run as a real-time averager.

e The function AcqrsD1_readData() with dataType = ReadReal64: In mode 0, it returns the last
acquired waveform, whereas in mode 2, it returns the averaged waveform (in Volts).

The buffered data acquisition mode (3) and the SSR mode (7) have the following differences from the
default mode (0):

e The function AcqrsD1_acquire(): In mode 0, it starts a normal waveform acquisition, whereas in
modes 3 or 7, it starts an acquisition into the next memory bank or a special memory bank, as defined
by flags.

e The functions AcqrsD1_readData(): In mode 0, they return the last acquired waveform from the
normal acquisition memory, whereas in mode 3, they return data from a memory bank (opposite to
what is defined by flags).

Programmer’s Reference Manual Page 98 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configMode(ViSession instrumentliD,
Vilnt32 mode, Vilnt32 modifier, Vilnt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Operation Mode.vi

Modifiet —————
Instrument ID Fala

T dup Instrument ID
Flags _|_|%-.5|:'§-f1'3' [Fe======= gtrar ouk
Error in (no error] =-==H

Visual Basic Representation

ConfigMode (ByVal instrumentlD As Long, _
Byval mode as Long, _
ByvVal modifier As Long, _
ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMode (ByVval instrumentlD As Int32, _
Byval mode as Int32, _
Byval modifier As Int32, _
Byval flags As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1 _configMode(instrumentlD, mode, modifier, flags)

Note: The older form Ag_configMode is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 99 of 222

2.3.52 AcqrsD1_configMultilnput

Purpose

Selects the active input when there are multiple inputs on a channel. It is useful for Averagers, Analyzers,
and some digitizer models.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
input Vilnt32 =(setto input connection A
=1 setto input connection B

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than 1 input per digitizer,
e.g. DP211). On the "normal" instruments with a single input per channel, this function may be ignored.

Programmer’s Reference Manual Page 100 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configMultilInput(ViSession instrumentlD, Vilnt32
channel, Vilnt32 input);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Configure Multiplexer Input.vi

Instrument ID Pl - dup Instrument I
Channel (1) - Canfia.
Input Selection {0: A) | | LAl error out

Error in {no érror

Visual Basic Representation

ConfigMultilnput (Byval instrumentlD As Long, _
ByvVal channel As Long, _
ByVal connection As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMultilnput (Byval instrumentiD As Int32, _
Byval channel As Int32, _
ByVal connection As Int32) As Int32

MATLAB MEX Representation

[status]= AgD1 configMultilnput(instrumentlD, channel, input)

Note: The older form Ag_configMultilnput is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 101 of 222

2.3.53 AcqrsD1_configSetupArray

Purpose

Sets the configuration for an array of configuration values. It is useful for Analyzers only.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 1...Nchan

setupType Vilnt32 Type of setup.
0 = GateParameters

nbrSetupObj Vilnt32 Number of setup objects in the array

setupData ViAddr Pointer to an array containing the setup objects
ViAddr resolves to void™* in C/C++. The user must
allocate the appropriate variable type and supply its
address as ‘setupData’.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

GateParameters in AqGateParameters

Name Type Description
GatePos Vilnt32 Start position of the gate (must be multiple of 4)
GateLength Vilnt32 Length of the gate (must be multiple of 4)

Discussion

The user has to take care to allocate sufficient memory for the setupData. nbrSetupObj should not be

higher than what the allocated setupData holds.

The SSR option allows up to 4095 gate definitions. The AP101/AP201 analyzers are limited to 64 gate definitions.

Note: The driver contains a set of 4095(64) default AqGateParameters, defined as { {0,256} {256, 256} {512, 256}
{768,256} ... }.

Programmer’s Reference Manual Page 102 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configSetupArray(ViSession instrumentlD, Vilnt32
channel,
Vilnt32 setupType, Vilnt32 nbrSetupObj,
ViAddr setupData);

LabVIEW Representation

Acqgiris Dx.Ivlib: (or Agq Dx) Configure Setup Array.vi

Channel {1) ——
Instrument ID [l

setupType — TEB%
nbrSetupObj
setupData
Errar in (no error)

dup Inskrument ID
=== grrar ok

Visual Basic Representation

ConfigSetupArray (ByVal instrumentlD As Long, _
Byval channel As Long, _
Byval setupType As Long, _
ByVal nbrSetupObj As Long, _
setupData As Any) As Long

Visual Basic .NET Representation

AcgrsD1_configSetupArray (ByVal instrumentlD As Int32, _
Byval channel As Int32, _
Byval setupType As Int32, _
ByVal nbrSetupObj As Int32, _
ByRef setupData As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_configSetupArray(instrumentlD, channel, setupType, nbrSetupObj,
setupData)

Note: The older form Ag_configSetupArray is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 103 of 222

2.3.54 AcqrsD1_configTrigClass

Purpose

Configures the trigger class control parameters of the digitizer.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

trigClass Vilnt32 =0 edge trigger
=1 TV trigger (12-bit-FAMILY External only)
=3 OR (10-bit & U1071A-FAMILIES)
=4 NOR (10-bit & U1071A-FAMILIES)
=5 AND (10-bit & UL0O71A-FAMILIES)
=6 NAND (10-bit & U1071A-FAMILIES)

sourcePattern Vilnt32 =0x000n0001 for Channel 1,
= 0x000n0002 for Channel 2,
= 0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
=0x800n0000 for External Trigger 1,
= (0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for Multilnstruments (AS bus operation). See
discussion below.

validatePattern Vilnt32 Currently unused, set to “0”

holdType Vilnt32 Currently unused, set to “0”

holdoffTime ViReal64 Currently unused, set to “0.0”

reserved ViReal64 Currently unused, set to “0.0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be retrieved with the
Acqrs_getInstrumentInfo function.

For more details on the trigger source pattern in AS bus-connected Multilnstruments, please refer to the
Programmer’s Guide section 3.17.2, Trigger Source Numbering with AS bus.

For configuring the TV trigger see AcqrsD1_configTrigTV.

The U1071A-FAMILY OR, NOR, AND, and NAND patterns can be implemented as
sourcePattern = 0x800n0001 for Channel 1 +External or
sourcePattern = 0x800n0002 for Channel 2 +External.

The 10-bit family OR, NOR, AND, and NAND patterns can be implemented as

sourcePattern = 0x800N000 f where 8 can be either 8 or 0 and f can be any value between 0 and f
consistent with the number of channels available in a single module.

Programmer’s Reference Manual Page 104 of 222

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1l_configTrigClass(ViSession instrumentID, Vilnt32
trigClass, Vilnt32 sourcePattern,
Vilnt32 validatePattern, Vilnt32 holdType, ViReal64
holdoffTime, ViReal64 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Trigger Class.vi

Source Pattern (1: Chan 1} ——— |
Instrument ID Al dup Instrument 10

. —{Canfig.
Error in (no error) Tria. error ouk

Visual Basic Representation

ConfigTrigClass (ByVal instrumentlD As Long, _
Byval trigClass As Long, _
ByVal sourcePattern As Long, _
Byval validatePattern As Long, _
ByVal holdType As Long, _
Byval holdoffTime As Double, _
ByVal reserved As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigClass (Byval instrumentlD As Int32, _
Byval trigClass As Int32, _
ByVal sourcePattern As Int32, _
Byval validatePattern As Int32, _
Byval holdType As Int32, _
ByVal holdoffTime As Double, _
ByVal reserved As Double) As Int32

MATLAB MEX Representation

[status]= AgD1 configTrigClass(instrumentlD, trigClass, sourcePattern,
val idatePattern, holdType, holdoffTime, reserved)

Note: The older form Ag_configTrigClass is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 105 of 222

2.3.55 AcqrsD1_configTrigSource

Purpose
Configures the trigger source control parameters for the specified trigger source (channel or External).
Parameters

Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 = 1...(Number of IntTrigSources) for internal sources
= -1..-(Number of ExtTrigSources) for external sources
See discussion below.
trigCoupling Vilnt32 =0 DC
=1 AC
=2 HF Reject (if available)
=3 DC, 50 Q (ext. trigger only, if available)
=4 AC, 50 Q (ext. trigger only, if available)
trigSlope Vilnt32 =0 Positive
=1 Negative
=2 out of Window
=3 into Window
=4 HF divide
=5 Spike Stretcher
trigLevell ViReal64 Trigger threshold in % of the vertical Full Scale of the
channel, or in mV if using an External trigger source.
See discussion below.
trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when Window
trigger is selected

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be retrieved with the
Acqrs_getInstrumentInfo function.

The allowed range for the trigger threshold depends on the model and the channel chosen. See your product
User Manual.

NOTE: Some of the possible states may be unavailable in some digitizers. In particular, the trigCoupling

choices of ‘DC, 50 O’ and ‘AC, 50 Q’ are only needed for modules that have both 50 Q and 1 MQ external
input impedance possibilities.

Programmer’s Reference Manual Page 106 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configTrigSource(ViSession instrumentlD, Vilnt32
channel, Vilnt32 trigCoupling,
Vilnt32 trigSlope, ViReal64 triglLevell,
ViReal64 trigLevel2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Extended Trigger Source.vi

Trigger Lewvel 2 {00
Channel {1} ————

Instrument ID Al dup Instrument 10
Tigger Coupling (0: DC) Conl Ex
Trigger Slope (0: positive) _I,.:H Tria, & arror ouk

Error in {no error)
Trigger Lewvel 1 {0}

Visual Basic Representation

ConfigTrigSource (ByvVal instrumentlD As Long,
ByvVal Channel As Long, _
ByvVal trigCoupling As Long, _
Byval trigSlope As Long, _
ByVal trigLevell As Double, _
Byval trigLevel2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigSource (ByVal instrumentlD As Int32, _
Byval Channel As Int32, _
Byval trigCoupling As Int32, _
ByVal trigSlope As Int32, _
ByvVal trigLevell As Double, _
ByVal trigLevel2 As Double) As Int32

MATLAB MEX Representation

[status]= AgD1_configTrigSource(instrumentlD, channel, trigCoupling,
trigSlope, triglLevell, triglLevel2)

Note: The older form Ag_configTrigSource is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 107 of 222

2.3.56 AcqrsD1_configTrigTV

Purpose

Configures the TV trigger parameters (12-bit-FAMILY only).

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 = -1..-(Number of ExtTrigSources) for external sources
See discussion below.

standard Vilnt32 =0 625/50/2:1 (PAL or SECAM)
=2 525/60/2:1 (NTSC)

field Vilnt32 =1 Field 1 - odd
=2 Field 2 - even

line Vilnt32 = line number, depends on the parameters above:
For 'standard' = 625/50/2:1
= 1to 313 for 'field' =1
=314 to 625 for 'field' =2
For 'standard' = 525/60/2:1
= 110 263 for 'field' = 1
= 1 to 262 for 'field' =2

Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be retrieved with the
Acqrs_getInstrumentInfo function.

Programmer’s Reference Manual

Page 108 of 222

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1l_configTrigTV (ViSession instrumentlD, Vilnt32

channel, Vilnt32 standard,
Vilnt32 field, Vilnt32 line);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Configure Trigger TV.vi

channel ————

Instrument ID s dup Instrumert 10

skandard — é—’nﬁi

Fisld T S prmeeeemors grpor ok
Error in (noerror) mj

line

Visual Basic Representation

ConfigTrigTVv (ByvVal instrumentlD As Long, _
ByvVal Channel As Long, _
Byval standard As Long, _
Byval field As Long, _
Byval line AS Long) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigTV (ByVal instrumentlD As Int32, _
ByvVal Channel As Int32, _
ByvVal standard As Int32, _
Byval field As Int32, _
ByVal line AS Int32) As Int32

MATLAB MEX Representation

[status]= AqD1 _configTrigTV(instrumentlD, channel, standard, field,

Note: The older form Ag_configMemoryEx is deprecated.
Please convert to the newer version.

line)

Programmer’s Reference Manual Page 109 of 222

2.3.57 AcqrsD1_configVertical

Purpose

Configures the vertical control parameters for a specified channel of the digitizer.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 1...Nchan, or —1,... for the External Input

fullScale ViReal64 in Volts

offset ViReal64 in Volts

coupling Vilnt32 = 0 Ground (Averagers ONLY)
=1DC, 1 MQ
=2AC, 1 MQ
=3DC,50Q
=4 AC,50Q

bandwidth Vilnt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

For the DC440 and DP310 the coupling input is used to select the signal input: DC, 50 Q for the Standard
input and AC, 50 Q for the Direct HF input.

Some instruments have no bandwidth limiting capability. In this case, use bandwidth = 0. With channel = -
1 this function can be used to set the Full Scale Range and the bandwidth limit of the external trigger for the
DC271-FAMILY digitizers, the 10-bit-FAMILY, the AC/SC, and the AP240/AP235 signal analyzer
platforms. For the case of a 10-bit-FAMILY or DC271-FAMILY Multilnstrument using AS bus, the
external triggers of the additional modules are numbered —3, -5, ... following the principles given in the
Programmer’s Guide section 3.17.2, Trigger Source Numbering with AS bus.

Programmer’s Reference Manual Page 110 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_configVertical(ViSession instrumentlD
channel,ViReal64 fullScale,
ViReal64 offset, Vilnt32 coupling,
Vilnt32 bandwidth);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Vertical Settings.vi

Coupling {1: ©Z, 1 MOhm)
Channel {1} ———

Instrument ID — Al dup Instrument 10
Full Scale (5,04 — -CL'-Dn'figj_
Qffset (W) — Mart erfor out

Errar in (no error) =
Bandwidth {0 no limit)

Visual Basic Representation

, Vilnt32

ConfigVertical (ByVal instrumentlD As Long, ByVal Channel As Long, _
Byval fullScale As Double, ByVal offset As Double, _

Byval coupling As Long, _
ByvVal bandwidth As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configVertical (ByVal instrumentlD As Int32, _
Byval Channel As Int32, _
Byval fullScale As Double, _
ByVal offset As Double, _
ByVal coupling As Int32, _
ByvVal bandwidth As Int32) As Int32

MATLAB MEX Representation

[status]= AgD1_configVertical (instrumentlD, channel, fullScale, offset,

coupling, bandwidth)

Note: The older form Ag_configVertical is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual

Page 111 of 222

2.3.58 AcqrsD1_errorMessage

Purpose

Translates an error code into a human

readable form. The new function Acqrs_errorMessage is to be

preferred.
Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier can be VI NULL
errorCode ViStatus Error code (returned by a function) to be translated
QOutput
Name Type Description
errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)
into which the error-message text is returned
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Discussion

There is no Matlab MEX implementation of this function.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_errorMessage(ViSession instrumentlD, ViStatus
errorCode, ViChar errorMessage[]):

LabVIEW Representation

See Acqgrs_errorMessage

Visual Basic Representation

errorMessage (ByVval

instrumentlD As Long, ByVal errorCode As Long, _

ByVal errorMessage As String) As Long

Visual Basic .NET Representation

AcqgrsD1_errorMessage

Programmer’s Reference Manual

(Byval instrumentlD As Int32, _
ByVal errorCode As Int32, _
ByVal errorMessage As String) As Int32

Page 112 of 222

2.3.59 AcqrsD1_errorMessageEx

Purpose

Translates an error code into a human readable form and returns associated information. The new function
Acqrs_errorMessage is to be preferred.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier can be VI NULL
errorCode ViStatus Error code (returned by a function) to be translated
errorMessageSize | Vilnt32 Size of the errorMessage string in bytes
(suggested size 512)
QOutput
Name Type Description
errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)
into which the error-message text is returned

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function should be called immediately after the return of the error status to ensure that the additional
information remains available. For file errors, the returned message will contain the file name and the
original 'ansi' error string. This is particularly useful for calls to the following functions:

Acqrs_calibrate Acqrs_calibrateEx
Acqrs_configlogicDevice AcqrsD1_configMode
Acqrs_init Acqrs_InitWithOptions

Programmer’s Reference Manual Page 113 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_errorMessageEx(ViSession instrumentlD, ViStatus
errorCode, ViChar errorMessage[], Vilnt32
errorMessageSize);

LabVIEW Representation
See Acqrs_errorMessage
Visual Basic Representation

errorMessageEx (ByVal instrumentlD As Long, ByVal errorCode As Long, _
ByVal errorMessage As String,
ByVal errorMessageSize As Long) As Long

Visual Basic .NET Representation

AcgrsD1_errorMessageEx (Byval instrumentlD As Int32, _
Byval errorCode As Int32, _
ByVal errorMessage As String,
ByVal errorMessageSize As Int32) As Int32

MATLAB MEX Representation

[status errorMessage]= Aq_errorMessage(instrumentlD, errorCode)

Programmer’s Reference Manual Page 114 of 222

2.3.60 AcqrsD1_forceTrig

Purpose

Forces a manual trigger. It should not be used for Averagers or Analyzers.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns immediately after ordering the acquisition to stop. One must therefore wait until the
acquisition has terminated before reading the data, by checking the status with the AcqrsD1_acqDone
function. If the external clock is enabled, and there is no clock signal applied to the device,
AcqrsD1_acqDone will never return dome = VI TRUE. Consider using a timeout and calling
AcqrsD1_stopAcquisition if it occurs. In multisegment mode, the current segment is acquired, the

acquisition is terminated and the data and timestamps of subsequent segments are invalid.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_forceTrig(ViSession instrumentlD);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Software Trigger.vi

Instrument ID g dup Instrument ID

Ton iy et
P

ertar in (no error) ==

Zofe. Tr. errar out

Visual Basic Representation

ForceTrig (ByVal instrumentlD As Long) As Long

Visual Basic .NET Representation

AcqrsD1_forceTrig (ByVal instrumentlD As Int32) As Int32
MATLAB MEX Representation

See AcqgrsD1_forceTrigEx

Programmer’s Reference Manual Page 115 of 222

2.3.61 AcqrsD1_forceTrigEx

Purpose

Forces a manual trigger. It should not be used for Averagers or Analyzers.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
forceTrigType Vilnt32 =0 Sends a software trigger to end the full acquisition
=1 Sends a single software trigger and generates the
TrigOut hardware signal
modifier Vilnt32 Currently not used
flags Vilnt32 Currently not used

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns immediately after ordering the acquisition to stop. One must therefore wait until the
acquisition has terminated before reading the data, by checking the status with the AcqrsD1_acqDone
function. If the external clock is enabled, and there is no clock signal applied to the device,
AcqrsD1_acqDone will never return dome = VI TRUE. Consider using a timeout and calling
AcqrsD1_stopAcquisition if it occurs.

For forceTrigType = 0, the 'trigOut’ Control IO will NOT generate a trigger output. This mode is equivalent
to AcqrsD1_forceTrig. In multisegment mode, the current segment is acquired, the acquisition is
terminated and the data and timestamps of subsequent segments are invalid.

For forceTrigType = 1, 'trigOut' Control 10 will generate a trigger output on each successful call. In
multisegment mode, the acquisition advances to the next segment and then waits again for a trigger. If no
valid triggers are provided to the device, the application must call AcqrsD1_forceTrigEx as many times as
there are segments. Every acquired segment will be valid. This mode is only supported for single (i.e. non-
AS bus-connected) digitizers (not Averagers or Analyzers).

Programmer’s Reference Manual Page 116 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_forceTrigeEx(ViSession instrumentiD ,
Vilnt32 forceTrigType, Vilnt32 modifier, Vilnt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Software Trigger.vi

Instrument ID ém,-fi'a. dup Instrument 1D
Twpe ——]
i Zofe. Tr. errar out

ertar in (no error) ==

Visual Basic Representation

ForceTrigEx (ByVal instrumentlD As Long, _
ByvVal forceTrigType as Long, _
ByVal modifier As Long, _
Byval flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_forceTrigEx (ByVal instrumentlD As Int32, _
Byval forceTrigType as Int32, _
ByVal modifier As Int32, _
Byval flags As Int32) As Int32

MATLAB MEX Representation

[status]= AqD1_ forceTrigEx(instrumentlD, forceTrigType, modifier, flags)

Note: The older form Aq_forceTrigEx is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 117 of 222

2.3.62 AcqrsD1_freeBank

Purpose

Free current bank during SAR acquisitions.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
reserved Vilnt32 Reserved

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Calling this function indicates to the driver that the current SAR bank has been read and can be reused for a
new acquisition. This call should be made after having read all desired data for the bank.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_freeBank(
ViSession instrumentlD, Vilnt32 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Free Bank.vi

Bqlie.

Instrument ID dup Inskrument I
error in fno errar) Eank error ouk

Visual Basic Representation

FreeBank (ByVal instrumentlD As Long, reserved As Long) As Long

Visual Basic .NET Representation

AcqrsD1_freeBank (ByVal instrumentlD As Int32,
ByVal reserved As Int32) As Int32

MATLAB MEX Representation

[status]= AgD1_freeBank(instrumentlD, reserved)

Programmer’s Reference Manual Page 118 of 222

2.3.63 AcqrsD1_getAvgConfig

Purpose

Returns an attribute from the analyzer/averager configuration channelNbr.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channelNbr Vilnt32 Channel number for use with AP240/AP235 dual-
channel mode. A value = 0 will be treated as =1 for
compatibility.
parameterString ViString Character string defining the requested parameter.
See AcqrsD1_configAvgConTfig for the list of
accepted strings.
Output
Name Type Description
value ViAddr Requested information value.

ViAddr resolves to void™ in C/C++. The user must
allocate the appropriate variable type (as listed under
AcqrsD1_configAvgConfig) and supply its
address as 'value'.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configAvgConfig.

Programmer’s Reference Manual Page 119 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_getAvgConfig(ViSession instrumentlD,
Vilnt32 channelNbr, ViString parameterString,
ViAddr value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Extended Averager Settings.vi
This Vi returns the value as either 132 or DBL. Connect the desired

type.
Channel Number ——
Instrument ID Al] dup Instrurment 1D
Parameter String =" ey — L Value (132)
Returned Type — T E Yalue (DEL)

EFFOFin (o error) errar auk

Visual Basic Representation

GetAvgConfig (ByVal instrumentlD As Long, _
Byval channelNbr As Long, _
ByVal parameterString As String, _
value as Any) As Long

Visual Basic .NET Representation

AcqrsD1_getAvgConfig (ByVval instrumentlD As Int32, _
ByVal channelNbr As Int32, _
ByvVal parameterString As String, _
ByRef value as Int32) As Int32

or
AcqrsD1_getAvgConfig (ByVal instrumentlD As Int32, _
ByVal channelNbr As Int32, _

ByvVal parameterString As String, _
ByRef value as Double) As Int32

MATLAB MEX Representation

Please use the MEX representation associated with AcqrsD1_getAvgConfigInt32 or
AcgrsD1_getAvgConfigReal 64

Note: The older form Agq_getAvgConfig is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 120 of 222

2.3.64 AcqrsD1_getAvgConfigInt32

Purpose

Returns a long attribute from the analyzer/averager configuration channelNbr.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channelNbr Vilnt32 Channel number for use with AP240/AP235 dual-
channel mode. A value = 0 will be treated as =1 for
compatibility.
parameterString ViString Character string defining the requested parameter.
See AcqrsD1_configAvgConTfig for the list of
accepted strings.
Output
Name Type Description
value Vilnt32 *addr Requested information value.

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configAvgConfig.

Programmer’s Reference Manual Page 121 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfigInt32(ViSession instrumentlD,
Vilnt32 channelNbr, ViString parameterString,
Vilnt32 *value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Extended Averager Settings.vi
This Vi returns the value as either 132 or DBL. Connect the desired

type.
Channel Number ——
Instrument ID Al] dup Instrurment 1D
Parameter String =" ey — L Value (132)
Returned Type — T E Yalue (DEL)

EFFOFin (o error) errar auk

Visual Basic Representation

GetAvgConfigInt32 (ByVal instrumentlD As Long, _
Byval channelNbr As Long, _
ByVal parameterString As String, _
value as Long) As Long

Visual Basic .NET Representation

AcqrsD1_getAvgConfigInt32 (ByVal instrumentlD As Int32, _
ByVal channelNbr As Int32, _
ByvVal parameterString As String, _
ByRef value as Int32) As Int32

MATLAB MEX Representation

[status value]= AgD1_getAvgConfigInt32(instrumentlD, channel, parameterString)

Programmer’s Reference Manual Page 122 of 222

2.3.65 AcqrsD1_getAvgConfigReal64

Purpose

Returns a double attribute from the analyzer/averager configuration channelNbr.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channelNbr Vilnt32 Channel number for use with AP240/AP235 dual-
channel mode. A value = 0 will be treated as =1 for
compatibility.
parameterString ViString Character string defining the requested parameter.
See AcqrsD1_configAvgConTfig for the list of
accepted strings.
Output
Name Type Description
value ViReal64 * Requested information value.

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configAvgConfig.

Programmer’s Reference Manual Page 123 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfigReal64(ViSession instrumentlD,
Vilnt32 channelNbr, ViString parameterString,
ViReal64 *value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Extended Averager Settings.vi
This Vi returns the value as either 132 or DBL. Connect the desired

type.
Channel Number ——
Instrument ID Al] dup Instrurment 1D
Parameter String =" ey — L Value (132)
Returned Type — T E Yalue (DEL)

EFFOFin (o error) errar auk

Visual Basic Representation

GetAvgConfigReal64 (Byval instrumentlD As Long, _
Byval channelNbr As Long, _
ByVal parameterString As String, _
value as Double) As Long

Visual Basic .NET Representation

AcqrsD1_getAvgConfigReal64 (ByVal instrumentID As Int32, _
ByVal channelNbr As Int32, _
ByvVal parameterString As String, _
ByRef value as Double) As Int32

MATLAB MEX Representation

[status value]= AqD1_getAvgConfigReal64(instrumentlD, channel,
parameterString)

Programmer’s Reference Manual Page 124 of 222

2.3.66 AcqrsD1_getChannelCombination

Purpose

Returns the current channel combination parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
nbrConvertersPer | Vilnt32 =1 all channels use 1 converter each (default)
Channel =2 half of the channels use 2 converters each
=4 1/4 of the channels use 4 converters each
usedChannels Vilnt32 bit-field indicating which channels are used. See
discussion below
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configChannel Combination.

Programmer’s Reference Manual

Page 125 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getChannelCombination(
ViSession instrumentlD,
Vilnt32* nbrConvertersPerChannel,
Vilnt32* usedChannels);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Channel Combination.vi

bl dup Instrument 10
nbrConvertersPeriZhannel
usedZhannels

errar out

Instrurment ID

I
EFTOF M (N0 erropr]) s [

Visual Basic Representation

GetChannelCombination (ByVal instrumentlD As Long, _
nbrConvertersPerChannel As Long, _
usedChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getChannelCombination (ByVal instrumentlD As Int32, _
ByRef nbrConvertersPerChannel As Int32, _
ByRef usedChannels As Int32) As Int32

MATLAB MEX Representation

[status nbrConvertersPerChannel usedChannels]=
AgD1_getChannelCombination(instrumentlD)

Note: The older form Ag_getChannelCombination is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual

Page 126 of 222

2.3.67 AcqrsD1_getControllO

Purpose

Returns the configuration of a ControllO connector. (For DC271-FAMILY/10-bit-FAMILY/AP-
FAMILY/12-bit-FAMILY and AC/SC Analyzers only)

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
connector Vilnt32 Connector Number
1 = Front Panel /O A (MMCX connector)
2 = Front Panel I/O B (MMCX connector)
9 = Front Panel Trigger Out (MMCX connector)
Output
Name Type Description
signal Vilnt32 Indicates the current use of the specified connector
0 = Disabled, 6 = Enable trigger etc.
For a detailed list, see the description of
AcqrsD1_configControll0
qualifierl Vilnt32 The returned values depend on the type of connector,
see the discussion in AcqrsD1_configControl 10
qualifier2 ViReal64 The returned values depend on the module, see the
discussion in AcqrsD1_configControl 10

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

ControllO connectors are front panel IO connectors for special purpose control functions of the digitizer.
Typical examples are user-controlled acquisition control (trigger enable) or control output signals such as
10 MHz reference’ or ‘trigger ready’.

The connector numbers are limited to 0 and the supported values. To find out which connectors are
supported by a given module, use this function with connector = 0:

AcqrsD1_getControl10(instriID, 0, &ctrllOPattern, NULL, NULL);

In this case, the returned value of signal is the bit-coded list of the connectors that are available in the
digitizer. E.g. If the connectors 1 (I/O A), 2 (I/O B) and 9 (TrigOut) are present, the bits 1, 2 and 9 of signal
are set, where bit 0 is the LSbit and 31 is the MSbit. Thus, the low order 16 bits of signal (or ctrllOPattern
in the example above) would be equal to 0x206.

The DC271-FAMILY, 10-bit-FAMILY, AP-FAMILY, 12-bit-FAMILY, and AC/SC cards support the

connectors 1 (front panel /O A MMCX coax), 2 (front panel I/O B MMCX coax) and 9 (front panel Trig
Out MMCX coax).

Programmer’s Reference Manual Page 127 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getControllO(ViSession instrumentlD,
Vilnt32 connector, Vilnt32* signal,
Vilnt32* qualifierl, ViReal64* qualifier2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Control 10 Connectors.vi

Instrument ID Al dup Instrument 1D
Connector - ey - Signal
Errar in {no error) == Loz === gy ook
Cualifier2
Cualifier 1

Visual Basic Representation

GetControll0 (Byval instrumentlD As Long, _
Byval connector As Long, _
signal As Long, _
qualifierl As Long, _
qualifier2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getControllO (ByVval instrumentlD As Int32, _
ByVal connector As Int32, _
ByRef signal As Int32, _
ByRef qualifierl As Int32, _
ByRef qualifier2 As Double) As Int32

MATLAB MEX Representation

[status signal qualifierl qualifier2]= AgD1 _getControll10(instrumentliD,
connector)

Note: The older form Ag_getControllO is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 128 of 222

2.3.68 AcqrsD1_getExtClock

Purpose

Returns the current external clock control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
clockType Vilnt32 =0 Internal Clock (default at start-up)
=1 External Clock, continuously running
=2 External Reference (10 MHz)
=4 External Clock, with start/stop sequence
inputThreshold ViReal64 Input threshold for external clock or reference in mV
delayNbrSamples | Vilnt32 Number of samples to acquire after trigger (for
'clockType' = 1 only!)
inputFrequency ViReal64 The presumed input frequency of the external clock,
for clockType = 4 only
sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 4
only
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configExtClock.

Programmer’s Reference Manual Page 129 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getExtClock(ViSession instrumentliD,
Vilnt32* clockType, ViReal64* inputThreshold, Vilnt32*
delayNbrSamples, ViReal64* inputFrequency, ViReal64*
sampFrequency) ;

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query External Clock.vi

ClockTwpe
T -Reference Freguency
Instrument ID Al dup Instrumient I
e 1 Sample Freguency
Errar in {no errar) Rt 0l Llnput Threshold
error out

Delay Mumber of Samples

Visual Basic Representation

GetExtClock (ByVal instrumentlD As Long, _
clockType As Long, _
inputThreshold As Double, _
delayNbrSamples As Long, _
inputFrequency As Double, _
sampFrequency As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getExtClock (ByVal instrumentlD As Int32, _
ByRef clockType As Int32, _
ByRef inputThreshold As Double, _
ByRef delayNbrSamples As Int32, _
ByRef inputFrequency As Double,
ByRef sampFrequency As Double) As Int32

MATLAB MEX Representation

[status clockType inputThreshold delayNbrSamples inputFrequency
sampFrequency]= AgD1l_getExtClock(instrumentlD)

Note: The older form Ag_getExtClock is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 130 of 222

2.3.69 AcqrsD1_getFCounter

Purpose

Returns the current frequency counter configuration

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
signalChannel Vilnt32 Signal input channel
type Vilnt32 Type of measurement
=0 Frequency (default)
=1 Period (1/frequency)
=2 Totalize by Time
=3 Totalize by Gate
targetValue ViReal64 User-supplied estimate of the expected value
apertureTime ViReal64 Time in sec, during which the measurement is executed
reserved ViReal64 Currently ignored
flags Vilnt32 Currently ignored
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual

Page 131 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getFCounter(ViSession instrumentliD,
Vilnt32* signalChannel, Vilnt32* type, ViReal64* targetValue,
ViReal64* apertureTime, ViReal64* reserved, Vilnt32* flags);

LabVIEW Representation

Acqgiris Dx.Ivlib: (or Aq Dx) Query FCounter.vi

Hal dup Inst L ID
Pl up Instrumen

s
SFrar in {no errar) By s Srﬁ:ynﬁsults

Instrument ID

Visual Basic Representation

GetFCounter (ByVval instrumentlD As Long, _
signalChannel As Long, _
type As Long, _
targetValue As Double,
apertureTime As Double, _
reserved As Double, _
flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getFCounter (ByVal instrumentlD As Int32, _
ByRef signalChannel As Int32, _
ByRef type As Int32, _
ByRef targetValue As Double, _
ByRef apertureTime As Double, _
ByRef reserved As Double, _
ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status signalChannel typeMes targetValue apertureTime reserved flags]=
AgD1_getFCounter(instrumentliID)

Note: The older form Ag_getFCounter is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 132 of 222

2.3.70 AcqrsD1_getHorizontal

Purpose

Returns the current horizontal control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
samplnterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configHorizontal.

Programmer’s Reference Manual

Page 133 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getHorizontal (ViSession instrumentlD, ViReal64*
samplnterval, ViReal64* delayTime);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Horizontal Settings.vi

Instrument IR “AaD dup Instrument ID
i - Delay Time
: i
Errar in.(na errar) it - Sample Inkerval
error out

Visual Basic Representation

GetHorizontal (ByVal instrumentlD As Long, _
samplnterval As Double,
delayTime As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getHorizontal (ByVal instrumentlD As Int32, _
ByRef samplnterval As Double, _
ByRef delayTime As Double) As Int32

MATLAB MEX Representation

[status samplinterval delayTime] = AqD1l _getHorizontal (instrumentliD)

Note: The older form Agq_getHorizontal is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 134 of 222

2.3.71 AcqrsD1_getInstrumentData (DEPRECATED)

Purpose

Returns some basic data about a specified digitizer. See Acqrs_getInstrumentData.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
name ViChar [] Pointer to user-allocated string, into which the model
name is returned (length < 32 characters).
serialNbr Vilnt32 Serial number of the digitizer.
busNbr Vilnt32 Bus number of the digitizer location.
slotNbr Vilnt32 Slot number of the digitizer location. (logical)

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getInstrumentData(ViSession instrumentlD, ViChar
name[], Vilnt32* serialNbr,
Vilnt32* busNbr, Vilnt32* slotNbr);

LabVIEW Representation

Please refer to Acgrs_getlnstrumentData

Visual Basic Representation

GetlnstrumentData (ByVal instrumentlD As Long, ByVal name As String, _
serialNbr As Long, busNbr As Long, _
slotNbr As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getinstrumentData (ByVal instrumentlD As Int32, _
Byval name As String, _
ByRef serialNbr As Int32, _
ByRef busNbr As Int32,
ByRef slotNbr As Int32) As Int32

MATLAB MEX Representation

[status name serialNbr busNbr slotNbr]= Aq_getInstrumentData(instrumentiD)

Programmer’s Reference Manual Page 135 of 222

2.3.72 AcqrsD1_getInstrumentinfo (DEPRECATED)

Purpose

Returns general information about a specified digitizer. See Acqrs_getInstrumentInfo.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
parameterString ViString Character string defining the requested parameter. See
below for the list of accepted strings.
Output
Name Type Description
infoValue ViAddr Requested information value.
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed below)
and supply its address as 'infoValue'.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Accepted Parameter Strings

Parameter String Returned Description
Type
"ASBus_m_BusNb" Vilnt32 Bus number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules —1).
"ASBus_ m_IsMaster" Vilnt32 Returns 1 if the m'th module of a multi-instrument is the
master, 0 otherwise. m runs from 0 to (nbr of modules —1).
"ASBus_m_PosInCrate" Vilnt32 Physical slot number (position) in cPCI crate of the m 'th
module of a multi-instrument. m runs from 0 to (nbr of
modules —1).
"ASBus_m_SerialNb" . Serial number of the m'th module of a multi-instrument. m
- - Vilnt32
runs from 0 to (nbr of modules —1).
"ASBus_ m_SlotNb" . Slot number of the m'th module of a multi-instrument. m
- = Vilnt32
runs from 0 to (nbr of modules —1).
"CrateNb" Vilnt32 Physical crate number (perhaps from AqGeo.map)
"DelayOffset” ViReal64 | Calibrated Delay Offset
(only useful for recovery of battery backed-up acquisitions)
"DelayScale" ViReal64 | Calibrated Delay Scale
(only useful for recovery of battery backed-up acquisitions)
"ExtCkRatio" ViReal64 | Ratio of sFmax over external clock inputFrequency
"HasTrigVeto" Vilnt32 Returns 1 if the functionality is available, 0 otherwise.
"IsPreTriggerRunning" Vilnt32 Returns 1 if the module has an acquisition started but is not
yet ready to accept a trigger.
"LogDevDatalL inks" Vilnt32 Number of available data links for a streaming analyzer
""LOGDEVHDRBLOCKmMDEVNS ViChar[] | Returns information about FPGA firmware loaded. See
string” comments below.
""MaxSamplesPerChannel™ Vilnt32 Maximum number of samples per channel available in
digitizer mode
"NbrADCBits" Vilnt32 Number of bits of data per sample from this modules ADCs
"NbrExternalTriggers" Vilnt32 Number of external trigger sources
"NbrinternalTriggers" Vilnt32 Number of internal trigger sources
"NbrModulesInlnstrument' | Vilnt32 Number of modules in this instrument. Individual modules
(not connected through AS bus) return 1.
"Options™ ViChar[] | List of options, separated by °,’, installed in this instrument.

Programmer’s Reference Manual

Page 136 of 222

Parameter String Returned Description
Type
"OverloadStatus chan” Vilnt32 Returns 1 if chan is in overload, 0 otherwise.
chan takes on the same values as 'channel' in
AcqrsD1_configTrigSource.
"OverloadStatus ALL" Vilnt32 Returns 1 if any of the signal or external trigger inputs is in
overload, 0 otherwise.
Use the "OverloadStatus chan " string to determine which
channel is in overload.
"PosInCrate" Vilnt32 Physical slot number (position) in cPCI crate
""SSRT imeStamp" ViReal64 | Current value of time stamp for Analyzers in SSR mode.
"TbSegmentPad" Vilnt32 Returns the additional array space (in samples) per segment
needed for the image read of AcqrsD1_readData. It
concerns the current data available, as opposed to any
future acquisition with different conditions.
"Temperature m" Vilnt32 Temperature in degrees Centigrade (°C)
"TrigLevelRange chan" ViReal64 | Trigger Level Range on channel chan
“VersionUserDriver” ViChar[] | String containing the full driver version.

Discussion

For the case "TrigLevelRange chan" the result is to be interpreted as
+ (returned value), which is in % of the vertical Full Scale of the channel, or in mV for an external trigger
source. The value of chan takes is the same as the values of 'channel' in AcqrsD1_configTrigSource.

For the case "Temperature m", m is the module number in a Multilnstrument and runs from 0 to (nbr of
modules —1) following the channel order. It may be omitted on single digitizers or for the master of a
Multilnstrument

For the case "Options" the available options are returned in a °,” separated string. The options include the
memory size if additional memory has been installed in the form "MnM" for digitizers where n is the
number of megabytes available or "PnMB" for AP235/AP240 and "AnM" for AP100/AP101/AP200/AP201.
Other possible options include "NoASBus", "BtBkup", "FreqCntr", "SSR", "Avg", and "StrtOnTrig". The
infoValue should point to a string of at least 32 characters.

The case of "LOGDEVHDRBLOCKMDEVNS string" is one in which several possible values of m, n, and
string are allowed. The single digit number m refers to the FPGA block in the module. For the moment this
must always have the value 1. The single digit number n refers to the FPGA device in the block. It can have
values in the range 1,2,3,4 depending on the module. Among the interesting values of string are the

nn nn nn

following case-sensitive strings: "name", "version", "versionTxt", "compDate", "model".

The case of "SSRTimeStamp" should only be used when data is readable. In other words, it should only be
used between the moment at which the processing is done and the moment when AcqrsD1_processData is
called to enable the subsequent bank switch.

Examples

double trigLevelRange;
AcqgrsD1_getlnstrumentinfo(lD, "TrigLevelRange -1, &trigLevelRange);

The acceptable trigger levels are in the range [-trigLevelRange, +trigLevelRange] mV (external trigger!).

For modules supporting switch on overload protection:

long overlLoad;

AcqrsD1_getinstrumentinfo(lD, "OverLoadStatus ALL", &overLoad);

if (overLoad)
DO SOMETHING

In order to find out which channel(s) caused the overload, you have to loop over ""OverLoadStatus -1",

"OverLoadStatus 1", "OverLoadStatus 2", ...

Programmer’s Reference Manual

Page 137 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getinstrumentinfo(ViSession instrumentlD, ViString
parameterString, ViAddr infoValue);

LabVIEW Representation

Please refer to Acqrs_getinstrumentinfo.

Visual Basic Representation
NOTE: In Visual Basic, a returned type of VilInt32 should be declared as Long, while a returned type of
ViReal 64 should be declared as Doubl e.
GetInstrumentinfo (ByVal instrumentlD As Long, _
ByVal parameterString As String, _
infovalue As Any) As Long

Visual Basic .NET Representation

AcqrsD1_getinstrumentinfo (ByVal instrumentlD As Int32, _
ByVal parameterString As String, _
ByRef infoValue As Int32) As Int32

or

AcgrsD1_getinstrumentinfo (ByVal instrumentID As Int32, _
ByvVal parameterString As String, _
ByRef infoValue As Double) As Int32

or

AcqrsD1_getinstrumentinfo (ByVal instrumentlD As Int32, _

ByVal parameterString As String, _
Byval infovValue As String) As Int32

MATLAB MEX Representation

[status infoValue] = Ag_getinstrumentinfo(instrumentlD, parameterString,
dataTypeString)

Allowed values of dataTypeString are * integer”, >double”,or *string” .

Programmer’s Reference Manual Page 138 of 222

2.3.73 AcqrsD1_getMemory

Purpose

Returns the current memory control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
nbrSamples Vilnt32 Nominal number of samples to record (per segment!)
nbrSegments Vilnt32 Number of segments to acquire. 1 corresponds to the
normal single-trace acquisition mode.
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configMemory.

Programmer’s Reference Manual

Page 139 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getMemory(ViSession instrumentlD,
Vilnt32* nbrSamples, Vilnt32* nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Memory Settings.vi

Instrument ID Pl - dup Instrument I
=
_ Sier Mumber of Segments
errar in (no errar) B ﬂ L ki of Samples
errar auk

Visual Basic Representation

GetMemory (ByVal instrumentlD As Long, _
nbrSamples As Long, _
nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMemory (ByVal instrumentlD As Int32, _
ByRef nbrSamples As Int32, _
ByRef nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status nbrSamples nbrSegments] = AgD1_getMemory(instrumentiD)

Note: The older form Ag_getMemory is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 140 of 222

2.3.74 AcqrsD1_getMemoryEx

Purpose

Returns the current extended memory control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
nbrSamplesHi ViUInt32 Will be set to 0 (reserved for future use)
nbrSamplesLo ViUInt32 Nominal number of samples to record (per segment!)
nbrSegments Vilnt32 Number of segments to acquire. 1 corresponds to the
normal single-trace acquisition mode.
nbrBanks Vilnt32 Number of banks to be used for 10-bit-FAMILY &
U1071A-FAMILY SAR mode
flags Vilnt32 = 0 default memory use
= 1 force use of internal memory (for 10-bit-FAMILY
& U1071A-FAMILY digitizers with extended memory
options only).
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configMemoryEx.

Programmer’s Reference Manual

Page 141 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getMemoryEx(ViSession instrumentliD,
Viulnt32* nbrSamplesHi, ViUlnt32* nbrSamplesLo, Vilnt32*
nbrSegments, Vilnt32* nbrBanks,

Vilnt32* flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Memory Settings.vi

Mumber of Banks
— dup Instrument I
Instrument ID :}W Mumber of Samples HIGH
= — Murnber of Samples LOW
errar in (no errard (et ® |_I Mumber o Segrﬁents
Flags
s @ ar oLk

Visual Basic Representation

GetMemoryEx (ByVal instrumentlD As Long, _
nbrSamplesHi As Long, _
nbrSamplesLo As Long, _
nbrSegments As Long, -
nbrBanks As Long, -
flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMemoryEx (ByVal instrumentlD As Int32, _
ByReT nbrSamplesHi As UInt32, _
ByRef nbrSamplesLo As UInt32, _
ByRef nbrSegments As Int32, -
ByRef nbrBanks As Int32, -
ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status nbrSamplesHi nbrSamplesLo nbrSegments nbrBanks flags]=
AgD1_getMemoryEx(instrumentlD)

Note: The older form Ag_getMemoryEx is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 142 of 222

2.3.75 AcqrsD1_getMode

Purpose

Returns the current operational mode of the digitizer

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
mode Vilnt32 Operational mode
modifier Vilnt32 Modifier, currently not used
flags Vilnt32 Flags
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configMode.

Programmer’s Reference Manual

Page 143 of 222

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1l_getMode(ViSession instrumentlD,
Vilnt32* mode, Vilnt32* modifier, Vilnt32* flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Operation Mode.vi

Instrument ID Al dup Instrumerit I0
o L Maode
Error in {no error) Prlods Lt radifiet
L== errar ouk
Flags

Visual Basic Representation

GetMode (ByVal instrumentlD As Long, _
mode as Long, _
modifier As Long, _
flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMode (ByVval instrumentlD As Int32, _
ByRef mode as Int32, _
ByRef modifier As Int32, _
ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status mode modifiers flags] = AqD1_getMode(instrumentlD)

Note: The older form Ag_getMode is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 144 of 222

2.3.76 AcqrsD1_getMultilnput

Purpose

Returns the multiple input configuration on a channel.

Parameters

Input

Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
Output

Name Type Description
input Vilnt32 =0 input connection A

=1 input connection B

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than 1 input per digitizer,
e.g. DP211). On the "normal" instruments with a single input per channel, this function may be ignored.

Programmer’s Reference Manual Page 145 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getMultilnput(ViSession instrumentiD
channel, Vilnt32* input);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Multiplexer Input.vi

Instrument ID Aali dup Instrument ID
Channel {1} - o | — = Inpu
errar in (no error]) ===l | S Tnpuk (False = A)
mLJ error out

Visual Basic Representation

GetMultilnput (Byval instrumentlD As Long, _
Byval channel As Long, _
inputs As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMultilnput (ByVal instrumentlD As Int32, _
ByvVal channel As Int32, _
ByRef input As Int32) As Int32

MATLAB MEX Representation

[status input] = AgD1l_getMultilnput(instrumentlD, channel)

Note: The older form Ag_getMultilnput is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual

, Vilnt32

Page 146 of 222

2.3.77 AcqrsD1_getNbrChannels (DEPRECATED)

Purpose

Returns the number of channels on the specified module. See Acqrs_getNbrChannels.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
nbrChannels Vilnt32 Number of channels in the specified module

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_getNbrChannels(ViSession instrumentlD, Vilnt32*
nbrChannels);

LabVIEW Representation

Please refer to Acgrs_getNbrChannels

Visual Basic Representation

GetNbrChannels (ByVval instrumentlD As Long, _
nbrChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getNbrChannels (ByVal instrumentlD As Int32, _
ByRef nbrChannels As Int32) As Int32

MATLAB MEX Representation

[status nbrChannels] = Aq_getNbrChannels(instrumentiD)

Programmer’s Reference Manual Page 147 of 222

2.3.78 AcqrsD1_getNbrPhysicallnstruments (DEPRECATED)

Purpose

Returns the number of physical Acqiris modules found on the computer. See Acqrs_getNbrInstruments.

Parameters
Output
Name Type Description
nbrlnstruments Vilnt32 Number of Acqiris modules found on the computer

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

In the case of multiple processes accessing the Agilent Acqiris instruments, this function will return the
number of currently available instruments. If an instrument has already been initialized in another process, it
will not be available unless it has been suspended via a call to Acqrs_suspendControl.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getNbrPhysical Instruments(
Vilnt32* nbrinstruments);

LabVIEW Representation

Please refer to Acqrs_getNbrinstruments.

Visual Basic Representation

GetNbrPhysical Instruments (nbrinstruments As Long) As Long

Visual Basic .NET Representation

AcgrsD1_getNbrPhysical Instruments (ByRef nbrinstruments As Int32 _
) As Int32

MATLAB MEX Representation

[status nbrinstrument]= Aq_getNbrPhysical Instruments()

Programmer’s Reference Manual Page 148 of 222

2.3.79 AcqrsD1_getSetupArray

Purpose

Returns an array of configuration parameters. It is useful for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1..Nchan
setupType Vilnt32 Type of setup.
0 = GateParameters
nbrSetupOb;j Vilnt32 Maximum allowed number of setup objects in the
output.
Output
Name Type Description
setupData ViAddr Pointer to an array for the setup objects
ViAddr resolves to void™ in C/C++. The user must
allocate the appropriate array and supply its address as
‘setupData’
nbrSetupObj- Vilnt32 Number of setup objects returned
Returned
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
AgGateParameters
Name Type Description
GatePos Vilnt32 Start position of the gate
GateLength Vilnt32 Length of the gate
Discussion

For the object definition refer to AcqrsD1_configSetupArray. If AcqrsD1_getSetupArray is called
without having set the Parameters before, the default values will be returned.

Note: The driver contains a set of 64 default AqGateParameters, defined as { {0,256} {256, 256} {512,
256} {768,256} ... }.

Programmer’s Reference Manual Page 149 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getSetupArray(ViSession instrumentlID, Vilnt32
channel,
Vilnt32 setupType, Vilnt32 nbrSetupObj
ViAddr setupData, Vilnt32* nbrSetupObjReturned);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Setup Array.vi

Channel (1} ———

Instrument ID Aally dup Instrument ID
setupType — ‘E‘.?J% &= cabypData ouk
nbrsetupObj — H = E I nbraetupObijReturned
error in {no error) error ouk

Visual Basic Representation

GetSetupArray (Byval instrumentlD As Long, _
Byval channel As Long, _
ByVal setupType As Long, _
ByVal nbrSetupObj As Long, _
setupbData As Any, _
nbrSetupObjReturned As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getSetupArray (ByVal instrumentlD As Int32, _
Byval channel As Int32, _
ByvVal setupType As Int32, _
ByVal nbrSetupObj As Int32, _
ByRef setupData As Int32, _
ByRef nbrSetupObjReturned As Int32) As Int32

MATLAB MEX Representation

[status setupData nbrSetupObjReturned] = AgD1_getSetupArray(instrumentlD,
channel, setupType, nbrSetupObj)

Note: The older form Agq_getSetupArray is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 150 of 222

2.3.80 AcqrsD1_getTrigClass

Purpose

Returns the current trigger class control parameters of the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
trigClass Vilnt32 =0 edge trigger
=1 TV trigger (12-bit-FAMILY External only)
=3 OR (10-bit & U1071A-FAMILIES)
=4 NOR (10-bit & U1071A-FAMILIES)
=5 AND (10-bit & U1071A-FAMILIES)
=6 NAND (10-bit & U1071A-FAMILIES)
sourcePattern Vilnt32 = 0x000n0001 for Channel 1,
= (0x000n0002 for Channel 2,
= 0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
= 0x800n0000 for External Trigger 1,
= 0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for Multilnstruments (AS bus operation). See
discussion below.
validatePattern Vilnt32 Currently returns "0"
holdType Vilnt32 Currently returns "0"
holdoffTime ViReal64 Currently returns "0"
reserved ViReal64 Currently returns "0"
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configTrigClass.

Programmer’s Reference Manual

Page 151 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getTrigClass(ViSession instrumentlD, Vilnt32*
trigClass, Vilnt32* sourcePattern, Vilnt32*
validatePattern, Vilnt32* holdType, ViReal64*
holdoffTime, ViReal64* reserved);

LabVIEW Representation
Acqgiris Dx.Ivlib: (or Ag Dx) Query Trigger Class.vi

Yalidate Fattern
T - Hizld Valus: 1
Instrument ID b — dup Instrument ID

Hold Valus
) NErY e
error in (no error) Trja. O E = Trioger Class
errar out
Source Pattern

Held Typa

Visual Basic Representation

GetTrigClass (ByVal instrumentlD As Long, _
trigClass As Long, _
sourcePattern As Long, _
validatePattern As Long, _
holdType As Long, _
holdoffTime As Double, _
reserved As Double) As Long

Visual Basic .NET Representation

AcqrsD1l_getTrigClass (ByVal instrumentlD As Int32, _
ByRef trigClass As Int32, _
ByRef sourcePattern As Int32, _
ByRef validatePattern As Int32, _
ByRef holdType As Int32, _
ByRef holdoffTime As Double, _
ByRef reserved As Double) As Int32

MATLAB MEX Representation

[status trigClass sourcePattern validatePattern holdType holdoffTime reserved]
= AgD1_getTrigClass(instrumentiD)

Note: The older form Agq_getTrigClass is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 152 of 222

2.3.81 AcqrsD1_getTrigSource

Purpose

Returns the current trigger source control parameters for a specified channel.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 = 1...(Number of IntTrigSources) for internal sources
= -1..-(Number of ExtTrigSources) for external sources
See discussion below.
QOutput
Name Type Description
trigCoupling Vilnt32 =0 DC
=1 AC
=2 HF Reject
=3 DC,50Q
=4 AC,50Q
trigSlope Vilnt32 =0 Positive
=1 Negative
=2 out of Window
=3 into Window
=4 HF divide
=5 Spike Stretcher
triglevell ViReal64 Trigger threshold in % of the vertical Full Scale of the
channel, or in mV if using an External trigger source.
See discussion below.
trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when Window
trigger is selected
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configTrigSource.

Programmer’s Reference Manual

Page 153 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_getTrigSource(ViSession instrumentlID, Vilnt32
channel, Vilnt32* trigCoupling,
Vilnt32* trigSlope, ViReal64* triglLevell, ViReal64*
trigLevel2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Trigger Source.vi

Trigger Level 1
| 1 Trigger Level 2

Instrument ID gl dup Instrumerit I
Channel (1) - Saie & Trigaer Coupling
error in (no errar) == Tiiz H I Trigger Slope
error ouk

Visual Basic Representation

GetTrigSource (Byval instrumentlD As Long, _
Byval Channel As Long, _
trigCoupling As Long, _
trigSlope As Long, _
trigLevell As Double, _
trigLevel2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getTrigSource (ByVal instrumentlD As Int32, _
ByVal Channel As Int32, _
ByRef trigCoupling As Int32, _
ByRef trigSlope As Int32, _
ByRef trigLevell As Double, _
ByReT trigLevel2 As Double) As Int32

MATLAB MEX Representation

[status trigCoupling trigSlope triglLevell triglLevel2] =
AgD1l_getTrigSource(instrumentlD, channel)

Note: The older form Ag_getTrigSource is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 154 of 222

2.3.82 AcqrsD1_getTrigTV

Purpose

Returns the current TV trigger parameters (12-bit-FAMILY only).

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 = -1..-(Number of ExtTrigSources) for external sources
See discussion below.
Output
Name Type Description
standard Vilnt32 =0 625/50/2:1 (PAL or SECAM)
=2 525/60/2:1 (NTSC)
field Vilnt32 =1 Field 1 - odd
=2 Field 2 - even
line Vilnt32 = line number, depends on the parameters above:
For 'standard' = 625/50/2:1
= 1to 313 for 'field' =1
=314 to 625 for 'field' =2
For 'standard' = 525/60/2:1
= 1to 263 for 'field' = 1
= 1 to 262 for 'field' =2

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See discussion under AcqrsD1_configTrigTV.

Programmer’s Reference Manual Page 155 of 222

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getTrigTV (ViSession instrumentlD, Vilnt32 channel,
Vilnt32* standard,

Vilnt32* field, Vilnt32* line);
LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Trigger TV.vi

——field
Instrument ID Aali dup Instrument ID
channel — e - skandard
error in {no error) = T"“l Eemgrror ouk

line

Visual Basic Representation

GetTrigTV (ByvVal instrumentiD As Long, _
ByvVal Channel As Long, _
standard As Long, _
field As Long, _
line AS Long) As Long

Visual Basic .NET Representation

AcqgrsD1_getTrigTV (ByVal instrumentID As Int32, _
Byval Channel As Int32, _
ByRef standard As Int32, _
ByRef field As Int32, _
ByRef line AS Int32) As Int32

MATLAB MEX Representation

[status standard field line] = AgD1 getTrigTV(instrumentlD, channel)

Note: The older form Ag_getTrigTV is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 156 of 222

2.3.83 AcqrsD1_getVersion (DEPRECATED)

Purpose

Returns version numbers associated with a specified digitizer or current device driver.

Acqrs_getVersion.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
versionltem Vilnt32 1 for version of Kernel-Mode Driver
2 for version of EEPROM Common Section
3 for version of EEPROM Digitizer Section
4 for version of CPLD firmware
Output
Name Type Description
version Vilnt32 version number of the requested item

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Discussion

See

For drivers, the version number is composed of 2 parts. The upper 2 bytes represent the major version

number, and the lower 2 bytes represent the minor version number.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_getVersion(ViSession instrumentlD,
Vilnt32 versionltem, Vilnt32* version);

LabVIEW Representation

Please refer to Acqrs_getVersion.

Visual Basic Representation

GetVersion (ByVal instrumentlD As Long, _
ByVal versionltem As Long, version As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getVersion (ByVval instrumentID As Int32, _
ByVal versionltem As Int32, ByRef version As Int32) As Int32

MATLAB MEX Representation

[status version] = Ag_getVersion(instrumentlD, versionltem)

Programmer’s Reference Manual Page 157 of 222

2.3.84 AcqrsD1_getVertical

Purpose

Returns the vertical control parameters for a specified channel in the digitizer.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan, or —1,... for the External Input
QOutput
Name Type Description
fullScale ViReal64 in Volts
offset ViReal64 in Volts
coupling Vilnt32 =1DC, 1 MQ
=2AC, 1 MQ
=3DC,50Q
=4 AC,50Q
bandwidth Vilnt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configVertical.

Programmer’s Reference Manual

Page 158 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_getVertical (ViSession instrumentliD,
Vilnt32 channel, ViReal64* fullScale,
ViReal64* offset, Vilnt32* coupling,
Vilnt32* bandwidth);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Vertical Settings.vi

Zoupling
Instrument ID Aali dup Instrument IO
Channel {1} - Eiay —Bandwidth
Error in (no error) == et LFU" Scale
errar aut
Offset

Visual Basic Representation

GetVertical (Byval instrumentlD As Long, _
Byval Channel As Long, _
fullScale As Double, _
offset As Double, _
coupling As Long, _
bandwidth As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getVertical (ByVal instrumentlD As Int32, _
ByvVal Channel As Int32, _
ByRef fullScale As Double, _
ByRef offset As Double, _
ByRef coupling As Int32, _
ByRef bandwidth As Int32) As Int32

MATLAB MEX Representation

[status fullScale offset coupling bandwidth] = AgD1 getVertical (instrumentliD,
channel)

Note: The older form Ag_getVertical is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 159 of 222

2.3.85 AcqrsD1_init (DEPRECATED)

Purpose

Initializes an instrument. See Acqrs_init.

Parameters
Input
Name Type Description
resourceName ViRsre ASCII string which identifies the digitizer to be
initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to '"TRUE!, resets the digitizer after initialization.
QOutput
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization, for a detailed explanation
on the initialization procedure.

The function returns the error code ACQIRIS ERROR INIT STRING INVALID when the initialization
string could not be interpreted.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_init(ViRsrc resourceName, ViBoolean IDQuery,
ViBoolean resetDevice, ViSession* instrumentlID);

LabVIEW Representation

Please refer to Acgrs_init.

Visual Basic Representation

Init (ByVal resourceName As String, ByVal IDQuery As Boolean, _
ByVal resetDevice As Boolean, instrumentlD As Long) As Long

Visual Basic .NET Representation

AcqrsD1_init (ByVal resourceName As String, ByVal 1DQuery As Boolean,
ByVal resetDevice As Boolean, ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentlD] = Ag_init(instrumentlD, IDQuery, resetDevice)

Programmer’s Reference Manual Page 160 of 222

2.3.86 AcqrsD1_InitWithOptions (DEPRECATED)

Purpose

Initializes an instrument with options. See Acqrs_InitWithOptions.

Parameters
Input
Name Type Description
resourceName ViRsrc ASCII string which identifies the digitizer to be
initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to '"TRUE!, resets the digitizer after initialization.
optionsString ViString ASCII string that specifies options.
Syntax: "optionName=bool" where bool is TRUE (1)
or FALSE (0).
Currently three options are supported:
”CAL”: do calibration at initialization (default 1)
"DMA": use scatter-gather DMA for data transfers
(default 1).
"simulate": initialize a simulated device (default 0).
NOTE: optionsString is case insensitive.
Output
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization for a detailed explanation
on the initialization procedure.

The function returns the error code ACQIRIS ERROR_INIT STRING INVALID when the initialization
string could not be interpreted.

When setting the option simulate to 1 (TRUE), the function AcqrsD1_setSimulationOptions should be
called first with the appropriate options.

Multiple options can be given; Separate the option=value pairs with °,” characters.

Programmer’s Reference Manual Page 161 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_InitWithOptions(ViRsrc resourceName, ViBoolean
IDQuery, ViBoolean resetDevice, ViString optionsString,
ViSession* instrumentiD);

LabVIEW Representation

Please refer to Acgrs_InitWithOptions.

Visual Basic Representation

InitWithOptions (ByVal resourceName As String, _
ByVal IDQuery As Boolean, _
ByVal resetDevice As Boolean, _
ByVal optionsString As String, _
instrumentlID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_InitWithOptions (ByVal resourceName As String, _
ByVal IDQuery As Boolean, _
ByVal resetDevice As Boolean, _
ByVal optionsString As String, _
ByRef instrumentlD As Int32) As Int32

MATLAB MEX Representation

[status instrumentlD]= Aq_initWithOptions(resourceName, IDQuery, resetDevice,
optionsString)

Programmer’s Reference Manual Page 162 of 222

2.3.87 AcqrsD1_logicDevicelO (DEPRECATED)

Purpose

Reads/writes a number of 32-bit data values from/to a user-defined register in on-board logic devices, such
as user-programmable FPGAs. It is useful for AC/SC Analyzers only. See Acqrs_logicDevicel O.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

deviceName ViChar [] Identifies which device to read from or write to.
In the AC210/240 and the SC210/240, this string must
be “Block1Dev1”

registerID Vilnt32 Register Number, can typically assume 0 to 127

nbrValues Vilnt32 Number of data values to read

dataArray Vilnt32 [] User-supplied array of data values

readWrite Vilnt32 Direction 0 =read from device, 1 = write to device

flags Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion
This function is only useful if the user programmed the on-board logic device (FPGA).

Typically, nbrValues is set to 1, but it may be larger if the logic device supports internal address auto-
incrementation. The following example reads the (32-bit) contents of register 5 to reg5Value:

ViStatus status =
AcqrsD1_logicDevicelO(ID, "BlocklDevl", 5, 1, ®5value, 0, 0);

Note that dataArray must always be supplied as an address, even when writing a single value.

Programmer’s Reference Manual Page 163 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_logicDevicelO(ViSession instrumentliD,

ViChar deviceName[], Vilnt32 registerlD,
Vilnt32 nbrVvalues, Vilnt32 dataArray|[],
readWrite, Vilnt32 flags);

LabVIEW Representation

Please refer to Acqrs_logicDevicelO.

Visual Basic Representation

LogicDevicelO (Byval instrumentlD As Long, _
ByVal deviceName As String, _
ByVal registerlID As Long, _
Byval nbrValues As Long, _
dataArray As Long, _
ByVal readWrite As Long, _
ByvVal modifier As Long) As Long

Visual Basic .NET Representation

AcqgrsD1_logicDevicelO (ByVal instrumentlD As Int32, _
ByVal deviceName As String, _
ByVal registeriID As Int32, _
ByVal nbrvalues As Int32, _
ByRef dataArray As Int32, _
ByvVal readWrite As Int32, _
ByVal modifier As Int32) As Int32

MATLAB MEX Representation

Vilnt32

[status] = Aq_logicDevicelO(instrumentlD, deviceName, registerlD, nbrValues,

dataArray, readWrite, modifier)

Programmer’s Reference Manual Page 164 of 222

2.3.88 AcqrsD1_multilnstrAutoDefine

Purpose

Automatically initializes all digitizers and combines as many as possible to Multilnstruments. Digitizers are
only combined if they are physically connected via AS bus.

Parameters
Input
Name Type Description
optionsString ViString ASCII string which specifies options.
Currently no options are supported.
Output
Name Type Description
nbrlnstruments Vilnt32 Number of user-accessible instruments. It also includes
single instruments that don't participate on the AS bus.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This call must be followed by nbrinstruments calls to the functions Acqrs_init or
Acqrs_InitWithOptions to retrieve the instrumentID of the (multi)digitizers.

In the case of multiple processes accessing the Agilent Acqiris instruments, this function will return the
number of currently available instruments. If an instrument has already been initialized in another process, it

will not be available unless it has been suspended via a call to Acqrs_suspendControl.

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a detailed
explanation on the initialization procedure.

Programmer’s Reference Manual Page 165 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_multilnstrAutoDefine(ViString optionsString,
Vilnt32* nbrinstruments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Multilnstrument Auto Define.vi

Faliz Murmber of Instruments
Cptions fnull string) e
AZBus
Error.in (no error) Luto, | errar ouk

Visual Basic Representation
MultilnstrAutoDefine (ByVal optionsString As String, _
nbrinstruments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_multilnstrAutoDefine (ByVal optionsString As String, _
ByRef nbrinstruments As Int32) As Int32

MATLAB MEX Representation

[status nbrinstruments] = AgD1_multilnstrAutoDefine(optionsString)

Note: The older form Ag_multilnstrAutoDefine is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 166 of 222

2.3.89 AcqrsD1_multilnstrDefine

Purpose

This function defines the combination of a number of digitizers connected by AS bus into a single
Multilnstrument. Tt is not applicable to AS bus 2 modules.

Parameters
Input
Name Type Description
instrumentList ViSession [] Array of 'instrumentID' of already initialized single
digitizers
nbrInstruments Vilnt32 Number of digitizers in the 'instrumentList'
masterID ViSession 'instrumentID' of master digitizer
QOutput
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a detailed
explanation on the initialization procedure.

The function returns the error code ACQIRIS ERROR_ MODULES NOT ON_SAME BUS if all modules
in the instrumentList are not on the same bus.

It may also return the error codes ACQIRIS ERROR NOT ENOUGH DEVICES or
ACQIRIS ERROR_NO_MASTER DEVICE, when nbrInstruments is < 2 or the masterID is not one of
the values in the instrumentList.

This function should only be used if the choices of the automatic initialization function
AcqrsD1_multilnstrAutoDefine must be overridden. If the function executes successfully, the
instrumentID presented in the instrumentList cannot be used anymore, since they represent individual
digitizers that have become part of the new Multilnstrument, identified with newly returned instrumentID.
Please refer to the Programmer’s Guide section 3.2.8, Manual Definition of Multilnstruments for more
information.

Programmer’s Reference Manual Page 167 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_multilnstrDefine(ViSession instrumentList[], Vilnt32
nbrinstruments, ViSession masterlD, ViSession*
instrumentiD);

LabView Representation

Acqiris Dx.lvlib: (or Ag Dx) Configure Multilnstrument Manual Define.vi

Instrument List {none) A0 rulkiInstrument 10
Master Digitizer ID {0) - Canfig:
BrroF in (N0 efror) == SUESER error out

Visual Basic Representation

MultilnstrDefine (ByRef instrumentList As Long,
ByVal nbrinstruments As Long, _
ByVal masterlID As Long, _
instrumentlD As Long) As Long

Visual Basic .NET Representation

AcqrsD1_multilnstrDefine (ByRef instrumentList As Int32, _
ByVal nbrinstruments As Int32, _
ByvVal masteriID As Int32, _
ByRef instrumentlD As Int32) As Int32

MATLAB MEX Representation

[status instrumentlD] = AqgD1 _multilnstrDefine(instrumentList, nbrinstruments,
masteriD)

Note: The older form Ag_multilnstrDefine is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 168 of 222

2.3.90 AcqrsD1_multilnstrUndefineAll

Purpose

Undefines all Multilnstruments.

Parameters
Input
Name Type Description
optionsString ViString ASCII string which specifies options.
Currently no options are supported.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a detailed
explanation on the initialization procedure.

This function is almost never needed, except if you want to dynamically redefine Multilnstruments with the
aid of the function AcqrsD1_multilnstrDefine. If the function executes successfully, the instrumentID of
the previously defined Multilnstruments cannot be used anymore. You must either have remembered the
instrumentID of the single instruments that made up the Multilnstruments, or you must reestablish all
instrumentIDs of all digitizers by reinitializing with the code shown in the Programmer’s Guide section
3.2.1, Identification by Order Found.

Programmer’s Reference Manual Page 169 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_multilnstrUndefineAll(ViString optionsString);

LabVIEW Representation

Acqiris Dx.lvlib: (or Agq Dx) Configure Multilnstrument Undefine.vi

o'-'lq'l_:l:r'

Options (null skring) meeeeseeen

: onfig,
Errar in (no error) Linde: error ouk

Visual Basic Representation

MultilnstrUndefineAll (ByVal optionsString As String) As Long

Visual Basic .NET Representation

AcqrsD1_multiInstrUndefineAll (ByVal optionsString As String) As Long
MATLAB MEX Representation

[status] = AqgD1_multilnstrUndefineAll(optionsString)

Note: The older form Ag_multilnstrUndefineAll is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 170 of 222

2.3.91 AcqrsD1_procDone

Purpose

Checks if the on-board data processing has terminated. This routine is for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
done ViBoolean done = VI_TRUE if the processing is terminated
VI FALSE otherwise

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_procDone(ViSession instrumentliD,
ViBoolean* done);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Process Done.vi

Instrument ID Fally gup Instrument I
BFFOF in (i Brror) s [T DEEE?
errar out

Visual Basic Representation

ProcDone (ByVal instrumentlD As Long, done As Boolean) As Long

Visual Basic .NET Representation

AcqrsD1_procDone (ByVal instrumentiD As Int32, _
ByRef done As Boolean) As Int32

MATLAB MEX Representation

[status done] = AgD1_procDone(instrumentiD)

Note: The older form Ag_procDone is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 171 of 222

2.3.92 AcqrsD1_processData

Purpose

Starts on-board data processing on acquired data in the current bank as soon as the current acquisition
terminates. It can also be used to allow the following acquisition to be started as soon as possible. This
routine is for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
processType Vilnt32 Type of processing

0 = no processing (or other Analyzers)

and for AP101/AP201 ONLY

1 = gated peak detection, extrema mode

2 = gated peak detection, hysteresis mode

3 = interpolated peaks, extrema mode

4 = interpolated peaks, hysteresis mode

And for Peak ™ Analyzers

0 = respect the settings done with
AcqrsD1 _configAvgConfig

1 = gated peak detection with hystersis

2 = gated and interpolated peak detection with
hysteresis

3 = gated peak detection with 8-point peak region

4 = gated peak detection with 16-point peak region

flags Vilnt32 Autoswitch functionality

0 = do (re-)processing in same bank

1 = start the next acquisition in the other bank

2 = switch banks but do not start next acquisition

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 172 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_processData(ViSession instrumentliD,
Vilnt32 processType, Vilnt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Process Data.vi

Instrument ID o dup Instrument 10
processType — i

flags ol gl = g 0 A 0 | o

errar in (no error)

Visual Basic Representation

ProcessData (ByVal instrumentlD As Long, _
ByVal processType As Long, _
ByvVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_processData (ByVal instrumentlD As Int32, _
ByVal processType As Int32, _
Byval flags As Int32) As Int32

MATLAB MEX Representation

[status] = AqD1_processData(instrumentlD, processType, flags)

Note: The older form Ag_processData is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual

Page 173 of 222

2.3.93 AcqrsD1_readData

Purpose

Returns all waveform information. The sample data is returned in an array whose type is specified in the
AqReadParameters structure.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan
readPar AqgReadParameters | Requested parameters for the acquired waveform.
QOutput
Name Type Description
dataArray ViAddr User-allocated waveform destination array.
The array size restrictions are given below.
ViAddr resolves to void™ in C/C++.
dataDesc AgDataDescriptor | Waveform descriptor structure, containing waveform
information that is common to all segments.
segDescArray ViAddr Segment descriptor structure array, containing data that
is specific for each segment. The size of the array is
defined by nbrSegments and the type by readMode.If
readMode =4 there are no segment descriptors.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Read Parameters in AqReadParameters

Name Type Description
dataType Vilnt32 Type representation of the waveform
0 =8-bit (char) =1 byte
1 = 16-bit (short) =2 bytes
2 =32-bit (long) =4 bytes
3 = 64-bit (double) = 8 bytes
readMode Vilnt32 readout mode of the digitizer
0 = standard waveform (single segment only)
1 = image read for sequence waveform
2 = averaged waveform (from an Averager ONLY)
3 = gated waveform (from an AP101/AP201 ONLY)
4 = peaks (from an AP101/AP201 or Peak™°)
5 = short averaged waveform (from an Averager)
6 = shifted short averaged waveform (from an
Averager)
7 = gated data from an SSR or Peak ™ Analyzer
9 = Peak™ Histogram readout from an Analyzer
10 = Peak ™ Peak region readout from an
Analyzer
11 = raw sequence waveform read
firstSegment Vilnt32 Requested first segment number, may assume 0 to the
(number of segments — 1).
nbrSegments Vilnt32 Requested number of segments, may assume 1 to the
actual number of segments.
firstSamplelnSeg Vilnt32 Requested position of first sample to read, typically 0.
May assume 0 to the actual (number of samples — 1).

Programmer’s Reference Manual Page 174 of 222

nbrSamplesInSeg Vilnt32 Requested number of samples, may assume 1 to the
actual number of samples.

segmentOffset Vilnt32 ONLY used for readMode = 1 in DIGITIZERS:
Requested offset, in number of samples, between
adjacent segments in the destination buffer dataArray.
Must be > nbrSamplesinSeg

dataArraySize Vilnt32 Number of bytes in the user-allocated dataArray. Used
for verification / protection.

segDescArraySize Vilnt32 Number of bytes in the user-allocated segDescArray.
Used for verification / protection.

flags Vilnt32 As used for DIGITIZERS

Bit Function

0 If set the first data point is at a fixed number
LSB | of points with respect to the resynchronized
trigger, otherwise it is before delayTime after

the Trigger

1 If set the lookup table (if any) will not be used
to translate the data, otherwise it will be.

3 If set the memory image will be transferred in

an image read but no segment re-ordering will
be done, otherwise it will be.

For Averagers if Bit 2 is set the accumulated data will
not be reset after being read, otherwise it will be.

AcqirisDataTypes.h contains AqReadDataFlags an
enum which encodes the above values.

reserved Vilnt32 Reserved for future use, set to 0.
reserved2 ViReal64 Reserved for future use, set to 0.
reserved3 ViReal64 Reserved for future use, set to 0.

Segment Descriptor for Normal Waveforms (readMode = 0,1,3) in AqSegmentDescriptor

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo ViUInt32 Low and high part of the 64-bit trigger timestamp. See
timeStampHi ViUInt32 discussion below.

Segment Descriptor for Averaged Waveforms (readMode = 2,5,6) in
AgSegmentDescriptorAvg

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo ViUInt32 Low and high part of the 64-bit trigger timestamp. See
timeStampHi ViUInt32 discussion below.
actualTriggersInSeg ViUInt32 Number of actual triggers acquired in this segment
avgOvfl Vilnt32 Acquisition overflow. See discussion below.
avgStatus Vilnt32 Average depth and status. See discussion below.
avgMax Vilnt32 Max value in the sequence. See discussion below.
flags ViUInt32 The lowest four bits contain the hardware marker

values. The correspondence is

Bit 0 (LSB) =PI, Bit 1 =P2

Bit2 =1/0O A Bit3=1/OB

The marker is set at the last trigger, in the first round of
the acquisition of the segment.

reserved Vilnt32 Reserved for future use

Programmer’s Reference Manual Page 175 of 222

Segment Descriptor for Raw Sequence Waveforms (readMode = 11) in
AgSegmentDescriptorSeqRaw

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo ViUInt32 Low and high part of the 64-bit trigger timestamp. See
timeStampHi ViUInt32 discussion below.
indexFirstPoint ViUInt32 Pointer to first sample of this segment
actualSegmentSize ViUInt32 Actual segment size, for the size of the circular buffer
reserved Vilnt32 Reserved for future use

Data Descriptor in AqDataDescriptor

Name Type Description

returnedSamplesPerSeg | Vilnt32 Total number of data samples actually returned.
DataArray[indexFirstPoint]...
DataArray[indexFirstPoint+ returnedSamplesPerSeg-1]

indexFirstPoint Vilnt32 Offset of the first valid data point, that of the first
sample, in the destination array. It should always be in
the range [0...31]. It is not an offset in bytes but rather
and index in units of samples that may occupy more
than one byte.

sampTime ViReal64 Sampling interval in seconds.

vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.

vOffset ViReal64 Vertical offset in Volts. See discussion below.

returnedSegments Vilnt32 Number of segments

nbrAvgWforms Vilnt32 Number of averaged waveforms (nominal) in segment

actualTriggersInAcqLo | ViUInt32 Low and high part of the 64-bit count of the number of

actualTriggersinAcqHi | ViUInt32 triggers taken for the entire acquisition

actualDataSize ViUInt32 Actual length in bytes used at dataArray. This value is
only returned for SSR and Peak ™™ Analyzers.

reserved2 Vilnt32 Reserved for future use

reserved3 ViReal64 Reserved for future use

Discussion

All structures used in this function can be found in the header file AcqirisDataTypes.h. This file also

contains enum definitions for the allowed values of the members of the AqReadParameters structure.

The type of the dataArray is determined from the AqReadParameters struct entry dataType.

Remember to set all values of the AqReadParameters structure, including the reserved values.

The following dataType and readMode combinations are supported:
0= 1= 2= 3= 4=
standard | image | averaged | gated peaks
0 =Int8 8,10 8,10 - APX01 -
1 =1Intl6 10,12 10,12 - - -
2 =Int32 - - X - Peak '
3 =Real64 X X X - APXO01
5= 6 =shifted | 7= | 9= 10= 11=
short short SSR | Histogram peak sequence
avera | averaged region raw
ged
0 =1Int8 - - X 8,10
1=1Int16 X X - Peak 10,12
2 =1Int32 - - - Peak ™" Peak ™"
3 =Real64 X X -

Programmer’s Reference Manual

Page 176 of 222

In this table
‘X’ means that the functionality is available depending on the option but independent of the model,
'8' means that the functionality is available for 8-bit Digitizers and AP units in the digitizer mode,
'10" means that it is available for the 10-bit Digitizers,
'12" means that it is available for the 12-bit Digitizers.

It must be remembered that 12-bit digitizers generate 12 or 13-bit data which will be transferred as 2 bytes
with the data shifted so that the MSB of the data becomes the MSB of the 16-bit word, thus preserving the
sign information. The vGain value is therefore not the gain of the ADC in volts/LSB but rather the
volts/LSB of the 16-bit word.

10-bit digitizers generate 12-bit data which can be transferred in either of 2 ways

e 2 bytes with the data shifted so that the MSB of the data becomes the MSB of the 16-bit word, thus
preserving the sign information

e 1 byte with the 8-bit data of the most significant bits of the ADC value. Here the lowest two bits
will be lost (truncated). The advantage is that the amount of data to be transferred has been cut by a
factor of 2.

Real64 readout of 10-bit digitizers is based on 16-bit transfer of the data,

The value in Volts of any integer data point data in the returned dataArray for a digitizer can be computed
with the formula:

V = vGain * data — vOffset

Except in the case of Analyzers, the data points for dataType = 3 are in Volts and no conversion is needed.
For Analyzers the data points are in units of the LSB of the ADC and must be converted using the formula
above.

For readMode = 0 and dataType < 1, indexFirstPoint must be used for the correct identification of the
first data point in the dataArray.

The 3 "averaged" modes correspond to:
2 — 24-bit data read as such into either Int32 32-bit integers or converted into volts for Real64,

5 — 16-bit data read of the least significant 16 bits of the 24-bit sum. The result is presented in
either an Int16 array or converted into volts for Real 64. The user is responsible for treating any
potential overflows,

6 — 16-bit data read of the most significant 16 bits of the 24-bit sum. The result is presented in
either an Int16 array or converted into volts for Real 64. The user is responsible for treating any
potential overflows.

It should also be noted that the interpretation of averager results was discussed in the Programmer’s Guide
section 3.10.5, Reading an Averaged Waveform from an Averager and 3.10.6, Reading a RT
Add/Subtract Averaged Waveform from an Averager.

If readMode is set to gated, the nbrSamplesInSeg is set to the sum of the gate lengths.

The rules for the allocation of memory for the dataArray are as follows:
= For digitizers (or other modules used as such)
0 with readMode = 0 and dataType = 0, the array size in bytes must be at least
(nbrSamplesInSeg+32).
0 with readMode = 0 and dataType = 1, the array size in words must be at least
(nbrSamplesInSeg+32).

Programmer’s Reference Manual Page 177 of 222

0 with readMode = 0 and dataType = 3, the array size in bytes must be at least
max(40,8*nbrSamplesInSeg) for 8-bit digitizers and max(88,8*nbrSamplesInSeg) for 10-bit
and 12-bit digitizers.

0 with readMode = 1 or readMode = 11 the waveform destination array dataArray must not
only allocate enough space to hold the requested data, but also some additional space. This
function achieves a higher transfer speed by simply transferring an image of the digitizer
memory to the CPU memory, and then reordering all circular segment buffers into linear
arrays. Since allocating a temporary buffer for the memory image is time consuming, the user-
allocated destination buffer is also used as a temporary storage for the memory image. The rule
for the minimum storage space to allocate with waveformArray is discussed in the
Programmer’s Guide section 3.10.2, Reading Sequences of Waveforms.

= For averagers
0 with readMode = 0,1 cannot be used. If the AcqrsD1_configMode mode is set to 0 (normal
data acquisition) please use the digitizer rules above
0 with readMode = 2, 5 or 6 are allowed and the size must be at least nbrSamplesInSeg*
nbrSegments * size of dataType

= For analyzers
0 with readMode = 0,1 cannot be used. If the AcqrsD1 configMode mode is set to 0 (normal
data acquisition) please use the digitizer rules above
0 readMode = 2 cannot be used
0 with readMode = 3 the array size must be at least the sum of all gate lengths.
0 with readMode = 4 in the APx01 analyzers the array size must be 4*sizeof(double) * number
of gates
0 with readMode = 4 in the Peak ™ analyzers the array size must be 8 * number of peaks
0 with readMode = 7 in the Peak ™ or SSR analyzers the array size must be
nbrSegments * (16 + nbrSamplesInSeg) for the simple case of all the data in a single gate. For
other cases please see the Programmer’s Guide section 3.10.7, Reading SSR Analyzer
Waveforms, for a detailed explanation.
0 with readMode = 9 the array size must be at least
o 2**HistoRes*nbrSamplesInSeg* nbrSegments*Size of dataType if a segmented
histogram is used and
where
e HistoRes is the value used in the call to Acqrs_configAvgConfig with
"TdcHistogramRes"
e NbrSegments is either 1 or the number of segments if the value used in the call to
Acqrs_configAvgConfig with "TdcHistogramMode" is 1
e Size dataType = 2*(1+HistoDepth), where HistoDepth is the value used in the call to
Acqrs_configAvgConfig with "TdcHistogramDepth"
o for all other cases, its size, in bytes, must be at least nbrSamplesInSeg*
nbrSegments*size _of dataType

For configuring gate parameters see the User Manual: Family of Analyzers
The value of returnedSamplesPerSeg for readMode = 7 is not useable and therefore set to 0.

If used the segment descriptor array segDesc[] must always be allocated with a length that corresponds to
the total number of segments requested with nbrSegments in AqReadParameters. The first requested
segment is therefore deposited in SegDesc[0]. The segment descriptor array must also be allocated with the
correct structure type that depends on the readMode. If not used a Null pointer can be passed to the
function. There are no segment descriptors for readMode =4, 7, 9, and 10.

The returned segment descriptor values timeStampLo and timeStampHi are respectively the low and high
parts of the 64-bit trigger timestamp, in units of picoseconds. The timestamp is the trigger time with respect
to an arbitrary time origin (usually the start-time of the acquisition except for the 10-bit digitizers), which is
intended for the computation of time differences between segments of a Sequence acquisition. Please refer
to the Programmer’s Guide section 3.15, Timestamps, for a detailed explanation.

The returned segment descriptor value horPos is the horizontal position, for the segment, of the first
(nominal) data point with respect to the origin of the nominal trigger delay in seconds. Since the first data
point is BEFORE the origin, this number will be in the range [-sampTime, 0]. Refer to the Programmer’s
Guide section 3.12, Trigger Delay and Horizontal Waveform Position, for a detailed discussion of the
value delayTime. For Averaged Waveforms, the value of horPos will always be 0.

Programmer’s Reference Manual Page 178 of 222

avgOvfl, avgStatus and avgMax will apply to Signal Averagers only. The features that they support have
not yet been implemented.

The value of segmentOffset must be > nbrSamplesinSeg. The waveforms are thus transferred sequentially
into a single linear buffer, with 'holes' of length (segmentOffset — nbrSamplesinSeg) between them. Such
'holes' could be used for depositing additional segment-specific information before storing the entire
sequence as a single array to disk. If you specify firstSegment > 0, you don’t have to allocate any buffer
space for waveforms that are not read, i.e. waveformArray[0] corresponds to the first sample of the
segment firstSegment.

Example: In a DC270, if you specify nbrSamplesinSeg = segmentOffset = 1500. Then with nbrSegments =
80 and nbrSamplesNom = 1000, since the currentSegmentPad = 408, you would have to allocate at least
1408 * (80 + 1) = 114'048 bytes.

It is strongly recommended to allocate the waveform destination buffers permanently rather than
dynamically, in order to avoid system overheads for buffer allocation/deallocation.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_readData(ViSession instrumentliD,
Vilnt32 channel, AgReadParameters* readPar,
ViAddr dataArray, AgDataDescriptor* descriptor, ViAddr
segDesc) ;

LabVIEW Representations

Acqiris Dx.lvlib: (or Ag Dx) Read Multi-Segments.vi
This Vi is polymorphic, the sample data is returned in an array of type I8, 116 or DBL.

It is meant for the readout of multiple segments with readMode = 1.

channel 11 datafrray ouk
Instrument 10 AqD dup Instrument ID
readPar =4 A el B dakaliesc
seqDescdrray in ﬁ 529 H% seqleschrray out
datafrray in error ouk

EFror in (no errar)

Acqgiris Dx.Ivlib: (or Ag Dx) Read Single Segment.vi
This Vi is polymorphic, the sample data is returned in an array of type I8, 116.

It is meant for the readout of a single segment with readMode = 0.

channel] datasrray ouk
Instrument ID Pl dup Instrument 1D
readPar = B Eal b= Jatalesc
datadrray in — HS"'; HLmsegDes-: oot
errar in (no errar) error ouk

Programmer’s Reference Manual Page 179 of 222

Acqiris Dx.lvlib: (or Aq Dx) Read Averager Data.vi
This Vi is polymorphic, the sample data is returned in an array of type 132 or DBL

It is meant for the readout of an averager with readMode = 2.

channzl 1T datafrray ouk
Instrument I [Fallss dup Instrument ID
readPar = o AvE b Jakaliesc
seqDeschrray in ﬂ Qals ﬁlﬂzseg[)esc.ﬂ.rray autk
datasrray in etror out

error in (no error)

Acqiris Dx.lvlib: (or Aq Dx) Read Gated Data.vi

It is meant for the readout of an analyzer with readMode = 3.

channel —T..Iﬁ—
Instrument ID Al dup Inskrument I0
readPar =4 o Rd B Jakalesc
|| GATED

datadrray in
Error i {no error)

-

datafrray ouk
error ouk

-

Acqiris Dx.lvlib: (or Aq Dx) Read Peaks Data.vi
This Vi is polymorphic, the sample data is returned in an array of type 132 or DBL

It is meant for the readout of an analyzer with readMode = 4.

channel
Instrument 10 #ali dup Instrument ID
readPar =4 E::{i = dataDesc

datafirray in

=

=

datafrray ook
error auk

error in (no error)

Acqgiris Dx.Ivlib: (or Aq Dx) Read SSR Data.vi

It is meant for the readout of an analyzer with readMode = 7.

channel —————

Inskrument 1D
readPar =

dup Instrument ID
b= databesc

2ZR

datafrray in — H

error in {no error)

HI_ dakafrray ouk

error ouk

Acqiris Dx.lvlib: (or Ag Dx) Read Histogram Data.vi

This Vi is polymorphic, the sample data is returned in an array of type 116 or 132

TD!
kC

It is meant for the readout of an Pea analyzer with readMode = 4.

channel ———

Instrument IC Pl dup Instrurment 1D
readPar = R e Jakaliesc
IR | HIZTOG

datafrray in
error in (no error)

—

Programmer’s Reference Manual

datadrray ouk
errar ouk

=

Page 180 of 222

Visual Basic Representation

ReadData (ByVal instrumentlD As Long, _
Byval channel As Long, _
readPar As AgReadParameters, _
dataArray As Any,
dataDesc As AqgDataDescriptor, _
segDescArray As Any) As Long

Note: For readPar.readMode = 1 you must use dataType=3;

Visual Basic .NET Representation

AcqrsD1_readData (ByVal instrumentiD As Int32, _

Byval channel As Int32, _

ByRef readPar As AqgReadParameters, _

ByRef dataArray As DATATYPE, _

ByRef dataDesc As AgDataDescriptor, _

ByRef segDescArray As AgSegmentDescriptor) As Int32
Where DATATYPE can be either Int8, Intl6, or Double

Note: For readPar.readMode = 1 you must use dataType=3;
or

AcqrsD1_readData (ByVal instrumentlID As Int32, _

ByVal channel As Int32, _

ByRef readPar As AqgReadParameters, _

ByRef dataArray As DATATYPEAVG, _

ByRef dataDesc As AgDataDescriptor, _

ByRef segDescArray As AgSegmentDescriptorAvg) As Int32 Int32
Where DATATYPEAVG can be either Intl6, Int32, or Double

MATLAB MEX Representation

[status dataDesc segDescArray dataArray] = AgDl_readData(instrumentliD,
channel, readPar)

Note: The older form Ag_readData is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 181 of 222

2.3.94 AcqrsD1_readFCounter

Purpose

Returns the result of a frequency counter measurement

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
result ViReal64 Result of measurement
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The result must be interpreted as a function of the effected measurement ‘type’:
Measurement Type

0 Frequency
1 Period

2 Totalize by Time
3 Totalize by Gate

Units
Hz

Sec
Counts
Counts

Programmer’s Reference Manual

Page 182 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_readFCounter(ViSession instrumentlD, ViReal64*
result);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Read FCounter.vi

Instrumenk ID T dup IItnslzrument]
i Fid FC —resL|
EFFar in (no error) B i

Visual Basic Representation

ReadFCounter (ByVal instrumentlD As Long, result As Double) As Long

Visual Basic .NET Representation

AcqrsD1_readFCounter (ByVal instrumentlD As Int32, _
ByRef result As Double) As Int32

MATLAB MEX Representation

[status result] = AgD1_readFCounter(instrumentiD)

Note: The older form Ag_readFCounter is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 183 of 222

2.3.95 AcqrsD1_reportNbrAcquiredSegments

Purpose

Returns the number of segments already acquired for a digitizer. For averagers (but not AP100 or AP200) it
will give the number of triggers already accepted for the current acquisition. In the case of analyzers it will
return the value 1 at the end of the acquisition and is therefore not of much use.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
nbrSegments Vilnt32 Number of segments already acquired

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Can be called after an acquisition, in order to obtain the number of segments/triggers actually acquired (until
AcqrsD1_stopAcquisition was called).

NOTE: For a digitizer, calling this function while an acquisition is active, in order to follow the progress
of a Sequence acquisition, is dangerous and must be avoided.

As needed the result should be interpreted as a ViUInt32.

Programmer’s Reference Manual Page 184 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_reportNbrAcquiredSegments(
ViSession instrumentlD, Vilnt32* nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Query Number of Acquired Segments.vi

Instrument ID Pl dup Inskrurment 1D

3 Cluery Mumber of SEgITIEI'ItS
errar in (no errar) 3 Sea e

Visual Basic Representation

ReportNbrAcquiredSegments (ByVal instrumentlD As Long, _
nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_reportNbrAcquiredSegments (ByVal instrumentlD As Int32, _
ByReT nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status nbrSegments] = Aqdl_reportNbrAcquiredSegments(instrumentiD)

Note: The older form Ag_reportNbrAcquiredSegments is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 185 of 222

2.3.96 AcqrsD1_reset (DEPRECATED)

Purpose

Resets an instrument. See Acqrs_reset

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Discussion

There is no known situation where this action is to be recommended.
LabWindowsCVI1/Visual C++ Representation
ViStatus status = AcqrsD1l_reset(ViSession instrumentiD);

LabVIEW Representation

Please refer to Acqrs_reset.

Visual Basic Representation

Reset (Byval instrumentlD As Long) As Long

Visual Basic .NET Representation

AcqrsD1_reset (ByVal instrumentiD As Int32) As Int32
MATLAB MEX Representation

[status] = Agq_reset(instrumentiD)

Programmer’s Reference Manual

Page 186 of 222

2.3.97 AcqrsD1_resetDigitizerMemory

Purpose

Resets the digitizer memory to a known default state.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Each byte of the digitizer memory is overwritten sequentially with the values Oxaa, 0x55, 0x00 and Oxff.
This functionality is mostly intended for use with battery backed-up memories.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1l_resetDigitizerMemory(
ViSession instrumentlID);

LabVIEW Representation

Please refer to Acqrs_resetMemory.

Visual Basic Representation

ResetDigitizerMemory (ByVal instrumentlD As Long) As Long
Visual Basic .NET Representation
AcqrsD1_resetDigitizerMemory (ByVal instrumentlD As Int32) As Int32

MATLAB MEX Representation

[status] = AqD1_resetDigitizerMemory(instrumentlD)

Note: The older form Ag_resetDigitizerMemory is deprecated.
Please convert to the newer version or Aq_resetMemory.

Programmer’s Reference Manual Page 187 of 222

2.3.98 AcqrsD1_restorelnternalRegisters

Purpose

Restores some internal registers of an instrument.
Only needed after power-up of a digitizer with the battery back-up option.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
delayOffset ViReal64 Global delay offset, should be retrieved with

Acgrs_getinstrumentlinfo (..., “DelayOffset”,
..) before power-off

If not known, use the value —20.0e-9

delayScale ViReal64 Global delay scale, should be retrieved with
Acqgrs_getlnstrumentinfo (..., “DelayScale”,
..) before power-off

If not known, use the value 5.0e-12

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The normal startup sequence destroys the contents of the Acqiris digitizer memories. This function, together
with a specific sequence of other function calls, prevents this from occurring in digitizers with battery
backed-up memories.

Please refer to the Programmer’s Guide section 3.19, Readout of Battery Backed-up Memories, for a
detailed description of the required initialization sequence to read battery backed-up waveforms.

Programmer’s Reference Manual Page 188 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_restorelnternalRegisters(
ViSession instrumentlD, ViReal64 delayOffset, ViReal64
delayScale);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Restore Internal Registers.vi

Insktrument ID aliz dup Instrument 1D
: e
Delay Offset . e I:
Delay Scale H &rror aul

efrar in {no error)

Visual Basic Representation

RestorelnternalRegisters (ByVal instrumentlD As Long,
Byval delayOffset As Double,
ByVal delayScale As Double) As Long

Visual Basic .NET Representation

AcqrsD1_restorelnternalRegisters (ByVal instrumentlD As Int32,
ByVal delayOffset As Double,
ByVal delayScale As Double) As Int32

MATLAB MEX Representation

[status] = AgD1l_restorelnternalRegisters(instrumentlD, delayOffset,
delayScale)

Note: The older form Ag_restorelnternalRegisters is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 189 of 222

2.3.99 AcqrsD1_setAttributeString (DEPRECATED)

Purpose

Sets an attribute with a string value (for use in SC Streaming Analyzers ONLY).

See Acqrs_setAttributeString

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

channel Vilnt32 1...Nchan

name ViConstString ASCII string that specifies options
“odITxBitRate” is currently the only one used

value ViConstString For “odITxBitRate” can have values like
“2.5G”,”2.125G”, or “1.0625G”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_setAttributeString(ViSession instrumentliD,
Vilnt32 channel, ViConstString name,

ViConstString value);

LabVIEW Representation

Please refer to Acqrs_setAttributeString.

Visual Basic Representation

Please refer to Acqrs_resumeControl.

Visual Basic .NET Representation

Please refer to Acqrs_resumeControl.
MATLAB MEX Representation

Please refer to Acqrs_resumeControl.

Programmer’s Reference Manual Page 190 of 222

2.3.100 AcqrsD1_setLEDColor (DEPRECATED)

Purpose

Sets the front panel LED to the desired color. See Acqrs_setLEDColor.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

color Vilnt32 0 = OFF (return to normal acquisition status indicator)
1 = Green
2=Red
3 = Yellow

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1l_setLEDColor(ViSession instrumentliD,
Vilnt32 color);

LabVIEW Representation

Please refer to Acqrs_setLEDColor.
Visual Basic Representation

SetLEDColor (ByVval instrumentlD As Long, _
ByvVal color As Long) As Long

Visual Basic .NET Representation

AcqrsD1_setLEDColor (ByVal instrumentlD As Int32, _
ByvVal color As Int32) As Int32

MATLAB MEX Representation

[status] = Aqg_setLEDColor(instrumentlD, color)

Programmer’s Reference Manual

Page 191 of 222

2.3.101 AcqrsD1_setSimulationOptions (DEPRECATED)

Purpose

Sets one or several options which will be used by the function AcqrsD1_InitWithOptions, provided that
the optionsString supplied to AcqrsD1_InitWithOptions contains the string "simulate=TRUE". See
Acqrs_setSimulationOptions

Parameters
Input
Name Type Description
simOptionString ViString String listing the desired simulation options. See
discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See the Programmer’s Guide section 3.2.10, Simulated Devices, for details on simulation. A string of the
form “M8M” is used to set an 8 Mbyte simulated memory. The simulation options are reset to none by
setting simOptionString to an empty string "".

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_setSimulationOptions(
ViString simOptionString);

LabVIEW Representation

Use Acqiris Bx.lvlib: (or Aq Bx) Initialize with Options.vi

Visual Basic Representation
SetSimulationOptions (ByVal simOptionString As String) As Long

Visual Basic .NET Representation

AcqrsD1_setSimulationOptions (ByVal simOptionString As String) _
As Int32

MATLAB MEX Representation

[status] = Ag_setSimulationOptions(simOptionsString)

Programmer’s Reference Manual Page 192 of 222

2.3.102 AcqrsD1_stopAcquisition

Purpose

Stops the acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will stop the acquisition and not return until this has been accomplished. The data is not
guaranteed to be valid. To obtain valid data after "manually" stopping the acquisition (e.g. timeout waiting
for a trigger), one should use the AcqrsD1_forceTrig function to generate a "software" (or "manual")
trigger, and then continue polling for the end of the acquisition with AeqrsD1_acqDone. This will ensure

correct completion of the acquisition.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_stopAcquisition(ViSession instrumentlID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Stop Acquisition.vi

Instrument ID FqD - dup Inskrument ID
gy P
Error in (no errar) Stop error ouk

Visual Basic Representation

StopAcquisition (ByVal instrumentlD As Long) As Long

Visual Basic .NET Representation

AcqrsD1_stopAcquisition (ByvVal instrumentID As Int32) As Int32
MATLAB MEX Representation
[status] = AqD1_stopAcquisition(instrumentlD)

Note: The older form Ag_stopAcquisition is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 193 of 222

2.3.103 AcqrsD1_stopProcessing

Purpose

Stops on-board data processing. This routine is for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will stop the on-board data processing immediately. The output data is not guaranteed to be
valid.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_stopProcessing(ViSession instrumentlD);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Stop Processing.vi

|

o

Instrument ID Falls dup Instrument ID

T

Error in (no error) error ouk

o

Visual Basic Representation

StopProcessing (ByVal instrumentlD As Long) As Long

Visual Basic .NET Representation

AcqrsD1_stopProcessing (ByVal instrumentlD As Int32) As Int32
MATLAB MEX Representation

[status] = AgD1_stopProcessing(instrumentiD)

Note: The older form Ag_stopProcessing is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 194 of 222

2.3.104 AcqrsD1_waitForEndOfAcquisition

Purpose

Waits for the end of acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
timeout Vilnt32 Timeout in milliseconds

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will return only after the acquisition has terminated or when the requested timeout has
elapsed, whichever comes first. For protection, the timeout is clipped to a maximum value of 10 seconds. If
a larger timeout is needed, call this function repeatedly.

While waiting for the acquisition to terminate, the calling thread is put into 'idle', permitting other threads or
processes to fully use the CPU.

If a channel or trigger overload was detected, the returned status is always
ACQIRIS_ ERROR_OVERLOAD. Else, if the acquisition times out, the returned status is
ACQIRIS_ ERROR_ACQ TIMEOUT, in which case you should use either AcqrsD1_stopAcquisition or
AcqrsD1_forceTrig to stop the acquisition. Otherwise, the returned status is VI_SUCCESS.

Programmer’s Reference Manual Page 195 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_waitForEndOfAcquisition (ViSession instrumentliD,
Vilnt32 timeout);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Wait For End OFf Acquisition.vi

Instrument ID Pl dup Instrumnent 1D
Timeout E
error in {noerror) == L error auk

Visual Basic Representation

WaitForEndOfAcquisition (Byval instrumentlD As Long, _
ByvVal timeout As Long) As Long

Visual Basic .NET Representation

AcqgrsD1_waitForEndOfAcquisition (ByVal instrumentlD As Int32, _
ByVal timeout As Int32) As Int32

MATLAB MEX Representation

[status] = AgD1_waitForEndOfAcquisition(instrumentlD, timeOut)

Note: The older form Ag_waitForEndOfAcquisition is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual Page 196 of 222

2.3.105 AcqrsD1_waitForEndOfProcessing

Purpose

Waits for the end of on-board data processing. . This routine is for Analyzers only.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
timeout Vilnt32 Timeout in milliseconds
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will return only after the on-board processing has terminated or when the requested timeout
has elapsed, whichever comes first. For protection, the timeout is clipped to a maximum value of 10

seconds. If a larger timeout is needed, call this function repeatedly.

While waiting for the processing to terminate, the calling thread is put into 'idle', permitting other threads or

processes to fully use the CPU.

If the processing times out, the returned status is ACQIRIS_ ERROR PROC TIMEOUT, in which case you
should use AcqrsD1_stopProcessing to stop the processing. Otherwise, the returned status is

VI_SUCCESS.

Programmer’s Reference Manual

Page 197 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsD1_waitForEndOfProcessing(ViSession instrumentlD,

Vilnt32 timeout);

LabVIEW Representation

Acqiris Dx.lvlib: (or Ag Dx) Wait For End OF Processing.vi

Instrument ID
Timeout — | E
arror in (no error) === e

Al

dup Inskrument 10
errar ouk

Visual Basic Representation

WaitForEndOfProcessing (ByVal instrumentlD As Long, _
ByvVal timeout As Long) As Long

Visual Basic .NET Representation

AcqrsD1_waitForEndOfProcessing (ByVal instrumentlD As Int32, _

ByvVal timeout As Int32) As Int32
MATLAB MEX Representation

[status] = AqD1 waitForEndOfProcessing(instrumentlD, timeOut)

Note: The older form Ag_waitForEndOfProcessing is deprecated.
Please convert to the newer version.

Programmer’s Reference Manual

Page 198 of 222

2.3.106 AcqrsT3 acqDone

Purpose

Checks if the acquisition has terminated.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
QOutput
Name Type Description
done ViBoolean done = VI_TRUE if the acquisition is terminated
VI FALSE otherwise
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

AcqrsT3_acqbone(ViSession instrumentlD,
ViBoolean* done);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Query Acquisition Status.vi

Instrument ID

Errorin (o errar)

FgTe gt
Iﬁl.u:rg,lfn
A,

Eatus

MATLAB MEX Representation

dup Instrument 10
.............. ; Cione
erraor ouk

[status done]= AQT3_acqgDone(instrumentiD)

Programmer’s Reference Manual

Page 199 of 222

2.3.107 AcqrsT3_acquire

Purpose

Starts an acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

LabWindowsCVI1/Visual C++ Representation

ViStatus status

AcqrsT3_acquire(ViSession instrumentlID);

LabVIEW Representation

Acqgiris Tx.Ivlib: (or Aq Tx) Start Acquisition.vi

Instrument ID

[T)
=

Stark

dup Instrument ID
1

Errar in {no errard

MATLAB MEX Representation

[status done]= AQT3_acquire(instrumentiD)

Programmer’s Reference Manual

Page 200 of 222

2.3.108 AcqrsT3_configAcqConditions

Purpose

Configures parameters affecting the entire acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
timeout ViReal64 Timeout in seconds
flags Vilnt32 The LSB (bit 0) = 0 start timeout counter on Arm
=1 start timeout counter on first
Common hit
reserved Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The timeout value of 0.0 means no timeout.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_configAcqConditions(ViSession instrumentlD,
ViReal64 timeout, Vilnt32 flags, Vilnt32 reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Ag Tx) Configure Acquisition Conditions.vi

Instrument ID Eﬂf{-ﬁ dup Instrument ID
Eimeout - P
Errar in {no errar) = Zaitl error out

MATLAB MEX Representation

[status]= AqT3_configAcqConditions(instrumentlD, timeout, flags, reserved)

Programmer’s Reference Manual Page 201 of 222

2.3.109 AcqrsT3_configChannel

Purpose

Configures parameters for defining timing events on each channel.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan or

—1 for the common channel
—2 for the veto
mode Vilnt32 The LSB (bit 0) = 0 positive slope
= 1 negative slope
Bit 1 = 0 normal events
= 1 pulse events with pulse type defined by the
LSB (TC890 ONLY)
The MSB (bit31) = 0 active channel
= 1 inactive channel
level ViReal64 Threshold value in Volts.
reserved Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion
Nchan can be found from a call to Acqrs_getNbrChannels.

The common channel cannot be inactivated.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_configChannel(ViSession instrumentID, Vilnt32
channel, Vilnt32 mode, ViReal64 level, Vilnt32 reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Configure Channel.vi

Channel ———
Instrument ID ATy
MI:IIIIE I |Config.

L | Channel
eV
Errar in (no error) ====H

dup Instrument ID
=== mpror ok

MATLAB MEX Representation

[status]= AQT3_configChannel (instrumentlD, channel, mode, level, reserved)

Programmer’s Reference Manual Page 202 of 222

2.3.110 AcqrsT3_configControllO

Purpose

Configures the auxiliary I/O connectors.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
connector Vilnt32 Connector Number
1 = Front Panel I/O Aux 1
2 = Front Panel I/O Aux 2
13 = Front Panel Veto Input
signal Vilnt32 See below
qualifierl Vilnt32 If the LSB (bit0) is set to 1 and the connector is being
used for an input signal, forces 50 Ohm termination.
qualifier2 ViReal64 Currently unused, set to “0.0”
Accepted Values of signal
Connector Type Possible Values of signal
Front Panel Aux I/O 0 = Disable
Veto:
1 =Veto

2 = Switch Veto - TC890
3 =Inverted Veto
4 = Inverted Switch Veto - TC890

Inputs:
TC840/TC842 TC890
16 =arm 1 = Bank switch
17 = stop 2 = Marker
Outputs:
TC840/TC842 TC890
48 = READY 32 =LVTTL low level
33 = LVTTL high level
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual

Page 203 of 222

LabWindowsCVI1/Visual C++ Representation
ViStatus status = AcqrsT3_configControllO (ViSession instrumentlD, Vilnt32

connector, Vilnt32 signal,
Vilnt32 qualifierl, ViReal64 qualifier2);

LabVIEW Representation

Acqgiris Tx.Ivlib: (or Aq Tx) Configure Control 1/0.vi

Cualifier - .
Qialifierl —‘_&L—‘_
Instrument ID [g dup Instrument 1D
Connector - Config.
| il error ouk

Signal
error in [ho errar) ==='E
MATLAB MEX Representation

[status]= AqT3_configControl10(instrumentlD, connector, signal, qualifierl,
qualifier2)

Programmer’s Reference Manual Page 204 of 222

2.3.111 AcqrsT3_configMemorySwitch

Purpose

Configures the memory bank switch triggering events. TC890 only.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

switchEnable Vilnt32 This is a bitfield to identify the unique event that can
cause the switch
=1 switch on Aux I/O (use AcqrsT3_configControllO

to enable signal)

=2 switch on count of events on common channel
=4 switch on memory size limit

countEvent Vilnt32 number of events on the common channel

sizeMemory Vilnt32 memory size limit to use

reserved Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsT3_configMemorySwitch (ViSession instrumentlD,
Vilnt32 switchEnable, Vilnt32 countEvent,
Vilnt32 sizeMemory, Vilnt32 reserved);

LabVIEW Representation

Acqgiris Tx.Ivlib: (or Aq Tx) Configure MemorySwitch.vi

SwitchEnable ———
Instrument ID BTy dup Instrurnment ID
CountEvent _l_—' FAED errl;r Bilk
SizeMernary b isch
error in {no error)

MATLAB MEX Representation

[status] = AqT3_configMemorySwitch(instrumentlD, switchEnable, countEvent,
sizeMemory, reserved)

Programmer’s Reference Manual Page 205 of 222

2.3.112 AcqrsT3_configMode

Purpose

Configures parameters for the operating mode of the instrument.

Parameters
Input
Name Type Description

instrumentID ViSession Instrument identifier

mode Vilnt32 = 1 standard acquisition - the only TC840 and TC842
mode
= 2 Time of Flight acquisition - the only TC890 mode

modifier Vilnt32 For TC840 and TC842

= 0 single acquisition

= 1 multiple acquisitions
flags Vilnt32 = 0 internal reference clock
= 1 external reference clock
= 2 enable test signal

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_configMode (ViSession instrumentliD,
Vilnt32 mode, Vilnt32 modifier, Vilnt32 flags);

LabVIEW Representation

Acqiris Tx.lvlib: (or Agq Tx) Configure Mode.vi

Mode —’I;'IL_
Instrument ID =]

Madifier P dup Instrument 1D

Flags Mode femmmmmmmea arrar ot
error in (no error) ==-=H

MATLAB MEX Representation

[status]= AqT3 _configMode(instrumentlD, mode, modifier, flags)

Programmer’s Reference Manual Page 206 of 222

2.3.113 AcqrsT3 forceTrig

Purpose

Generate a COMMON hit for a TC890.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
forceTrigType Vilnt32 Currently unused, set to “0”
modifier Vilnt32 Currently unused, set to “0”
flags Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function can be used to either

* measure times of multiple hits on the same or different channels, relative to a single origin. In this case, no
signal would be connected on the 'COMMON' channel. Instead, 'AcqrsT3 forceTrig' would be called directly
after 'AcqrsT3_acquire' to start the TC's real time counter. Subsequent hits on the other channels would then be
measured relative to the moment 'forceTrig' was called.

= trigger a bank switch in 'Switch on event count' mode, by inserting additional 'dummy' COMMON hits after the
last 'real' COMMON hit until the bank switch occurs.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_ forceTrig(ViSession instrumentlD,
Vilnt32 forceTrigType, Vilnt32 modifier, Vilnt32 flags);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Force Trigger.vi

Acqiris Tx.lvlib:Force Trigger.vi

Instrument ID :’;Ti;"'": dup Inskrument 1D

Error in (no error) Trigger arror ouk

MATLAB MEX Representation

[status]= AQqT3 forceTrig(instrumentlD, forceTrigType, modifier, flags)

Programmer’s Reference Manual Page 207 of 222

2.3.114 AcqrsT3_getAcqConditions

Purpose

Returns the current acquisition parameters of the Time-to-Digital Converter.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
timeout ViReal64 Timeout in seconds
flags Vilnt32 The LSB (bit 0) = 0 start timeout counter on Arm
= 1 start timeout counter on first
Common hit
reserved Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsT3_configAcqConditions.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_getAcqConditions (ViSession instrumentlD,
ViReal64* timeout,
Vilnt32* flags, Vilnt32* reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Ag Tx) Query Acquisition Conditions.vi

Instrunment ID ﬁmﬁ‘i) dup Instrurient 1D
) Agar.y = Timeouk
Errar in [no errar) Cond. ree gppar oUE

MATLAB MEX Representation

[status timeoutP flagsP reservedP]= AqT3_getAcqConditions(instrumentlD)

Programmer’s Reference Manual Page 208 of 222

2.3.115 AcqrsT3_getChannel

Purpose

Returns the current channel parameters of the Time-to-Digital Converter.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
channel Vilnt32 1...Nchan or
—1 for the common channel
—2 for the veto
QOutput
Name Type Description
mode Vilnt32 The LSB (bit 0) = 0 positive slope
= 1 negative slope
Bit 1 = 0 normal events
= 1 pulse events with pulse type defined by the
LSB (TC890 ONLY)
The MSB (bit31) = 0 active channel
= 1 inactive channel
level ViReal64 Threshold value in Volts.
reserved Vilnt32 Currently unused, set to “0”

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsT3_configChannel.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_getChannel (ViSession instrumentliD,
Vilnt32 channel, Vilnt32* mode,
ViReal64* level, Vilnt32* reserved);

LabVIEW Representation

Acqgiris Tx.Ivlib: (or Ag Tx) Query Channel.vi

Instrument ID a;:r'ri-. dup Instrurment 10
Channel Chanhel — - Mode
arrar in {noerror) == — Level

error ook
MATLAB MEX Representation

[status modeP levelP reservedP]= AqT3_getChannel (instrumentlD, channel)

Programmer’s Reference Manual Page 209 of 222

2.3.116 AcqrsT3_getControllO

Purpose

Returns the current configuration of the auxiliary I/O connectors.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
connector Vilnt32 Connector Number
1 = Front Panel Aux I/O 1
2 = Front Panel Aux I/O 2
QOutput
Name Type Description
signal Vilnt32 See remarks under
AcqrsT3_configControll0
qualifierl Vilnt32 If the LSB (bit0) is set to 1 forces 50 Ohm termination
for the connector
qualifier2 ViReal64 Currently unused
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsT3_configControllO

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_getControllO (ViSession instrumentliD,
Vilnt32 channel, Vilnt32* signal,
Vilnt32* qualiflierl, ViReal64* qualiflier2);

LabVIEW Representation

AcqrsT3 Query ControllO.vi

Instrument ID ity dup Instrument 1D
Connector — Bhien) L Sigral
- Tl T
Error i [no error) == - Tees grror ouk
Cualifierz
Cualifier1

MATLAB MEX Representation

[status signal qualifierl qualifier2]= AqT3 _getControll0(instrumentliD,
connector)

Programmer’s Reference Manual Page 210 of 222

2.3.117 AcqrsT3_getMemorySwitch

Purpose

Returns the current channel parameters of the memory bank switch operation.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
switchEnable Vilnt32 This is a bitfield to identify the enabled events
=1 switch on I/O Aux
=2 switch on count of events on common channel
=4 switch on memory size limit
countEvent Vilnt32 number of events on the common channel
sizeMemory Vilnt32 memory size limit to use
reserved Vilnt32 Currently unused

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsT3_configMemorySwitch.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_getMemorySwitch (ViSession instrumentliD,
Vilnt32* switchEnable, Vilnt32* countEvent,
Vilnt32* sizeMemory, Vilnt32* reserved);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Query MemorySwitch.vi

dup Instrurnent ID

Instrument I ey SwitchEnable
etror in (o errar) e i g;:}:‘qf;gr”;
mem-=-=narru:ur ok

MATLAB MEX Representation

[status switchEnableP countEventP sizeMemoryP reservedP]=
AQT3_getMemorySwitch(instrumentiD)

Programmer’s Reference Manual Page 211 of 222

2.3.118 AcqrsT3 getMode

Purpose

Returns the current operational mode of the Time-to-Digital Converter.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Output
Name Type Description
mode Vilnt32 = 1 standard acquisition TC840 and TC842
= 2 Time of Flight acquisition TC890
modifier Vilnt32 For TC840 and TC842
= 0 single hit
= 1 multiple hits
flags Vilnt32 = 0 internal reference clock
= 1 external reference clock

Return Value

Name Type Description

status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsT3_configMode.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_getMode (ViSession instrumentliD,
Vilnt32* mode,
Vilnt32* modifier, Vilnt32* flags);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Query Mode.vi

— dup Instrument ID

Instrumerit ID ;:::: T mngi
i Made adirier
Errarin (no error) s
H-"‘“‘“‘“‘“erru:ur ouk

MATLAB MEX Representation

[status mode modifiers flags] = AqT3_getMode(instrumentlD)

Programmer’s Reference Manual Page 212 of 222

2.3.119 AcqrsT3 readData

Purpose

Returns all Time-to-Digital Converter information. The sample data is returned in a model dependent form

and as specified in the AqQT3ReadParameters structure.

Parameters
Input
Name Type Description
instrumentID | ViSession Instrument identifier
channel Vilnt32 Reserved for future use (must be set to 0)
readPar AqgT3ReadParameters Requested parameters for the acquired data.
QOutput
Name Type Description
dataDesc AqgT3DataDescriptor Data descriptor structure needed for interpretation
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Read Parameters in AqT3ReadParameters

Name Type Description

dataArray ViAddr User-allocated time value data buffer .

dataSizelnBytes ViUInt32 Number of bytes in the user-allocated dataArray. Used
for verification / protection. See discussion for required
size.

nbrSamples Vilnt32 Number of samples requested. For the TC890 it is used
for the maximum number of 4-byte structures to be
returned by the read (see dataType = 4 discussion
below)

dataType Vilnt32 Type representation of the data
4 = ReadRawData = raw format = 4 bytes as used

for the TC890 TOF mode

3 = ReadReal64 = 64-bit (double) = 8 bytes
2 = ReadInt32 = 32-bit (integer) = 4 bytes TC840 only

readMode Vilnt32 0 = AqT3ReadStandard = standard readout mode
1 = AqT3ReadContinuous = TOF mode - TC890 only

reserved3 Vilnt32 Reserved for future use

reserved2 Vilnt32 Reserved for future use

reservedl Vilnt32 Reserved for future use

Data Descriptor AqT3DataDescriptor

Name Type Description

dataPtr ViAddr Pointer to time value data buffer.

May differ from dataArray above!
nbrSamples Vilnt32 number of samples returned
sampleSize Vilnt32 Size in bytes of the time data format in use
sampleType Vilnt32 type of the returned samples, see AqT3SampleType
flags Vilnt32 For TC890 ONLY

Bit 0: Internal memory overflow flag

Bit 1: External memory overflow flag
reserved3 Vilnt32 Reserved for future use
reserved2 Vilnt32 Reserved for future use
reserved] Vilnt32 Reserved for future use

Programmer’s Reference Manual

Page 213 of 222

Discussion

All structures used in this function can be found in the header files AcqirisT3Interface.h and
AcqirisDataTypes.h.

The type of the dataArray is determined from the AqQT3ReadParameters struct entry dataType.

= dataType = 4 is used for raw data. For example, the 32-bit natural readout of the TC890 TOF multihit
mode is of AqT3SampleType AqT3Struct50ps6¢ch and has the following format:

31 28-30 0-27
Overflow Channel Data

where
Channel = 1...6 denotes the physical channels. The Data bits give the time value in units of 50 ps

0 is for the start of the next event. In this case the Data bits give the count of the common start
within the current acquisition

7 is for marker data with Data

=0 : Switch from Auxiliary input A

=1 : Switch marker: Common channel Event count.
= 2 : Switch marker: Memory Full.

=16 : Marker: Auxiliary input B marker.

= dataType = 3 is used for double floating-point format time results. These results are always in seconds.
A value of 1e10 is a sign that the channel in question did not see a stop.

= dataType = 2 is used for integer format time results. These results are always in multiples of the
granularity given by the AqT3SampleType value of AqT3Count50psint32. A value of 0 is a sign that

the channel in question did not see a stop.

The dataSizeInBytes must fulfill the storage requirement for the raw data read from the device. This means
that for the TC840/TC842

single hit mode - 104 bytes for TC840, 416 bytes for TC842
multi-start mode - 52KB = 53248 bytes

and for the TC890 you must configure it as a function of the number of expected values, including the start,
and markers counting 4 bytes for each. The worst case is the full bank of 8MB = 8388608.

Data beyond the point implied by the nbrSamples returned value must be ignored.

The TC890 memory overflow flags show whether that condition happened since the previous call of the
readData routine.

Programmer’s Reference Manual Page 214 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_readData(ViSession instrumentliD,
Vilnt32 channel, AqT3ReadParameters* readPar,

AgT3DataDescriptor* dataDesc);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Read Data.vi
This Vi is polymorphic, the sample data is returned in an array of type 132 or DBL

etror out
Insktrument I rf::o;‘}-ﬂ dup Instrument 10
readPar "'““ISE datalesc
dataftray in = = dataftray ouk
error in {no error) ============E

MATLAB MEX Representation

[status dataDesc dataArray] = AgT3_readData(instrumentlD, channel, readPar)

Programmer’s Reference Manual Page 215 of 222

2.3.120 AcqrsT3_readDatalnt32

Purpose

Returns all Time-to-Digital Converter information for a TC840 or TC890. The sample data is returned in a

model dependent form and as specified in the AqT3ReadParameters structure.

Parameters
Input
Name Type Description
instrumentID | ViSession Instrument identifier
channel Vilnt32 Reserved for future use (must be set to 0)
readPar AqgT3ReadParameters Requested parameters for the acquired data.
QOutput
Name Type Description
dataArrayP Vilnt32* Data array pointer
dataDesc AqgT3DataDescriptor Data descriptor structure needed for interpretation
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Read Parameters in AqT3ReadParameters

Name Type Description

dataArray ViAddr Unused - set to NULL .

dataSizelnBytes ViUInt32 Number of bytes in the user-allocated dataArray. Used
for verification / protection. See discussion for required
size.

nbrSamples Vilnt32 Number of samples requested. For the TC890 it is used
for the maximum number of 4-byte structures to be
returned by the read (see dataType = 4 discussion
below)

dataType Vilnt32 Type representation of the data
4 = ReadRawData = raw format = 4 bytes as used

for the TC890 TOF mode

2 = ReadInt32 = 32-bit (integer) = 4 bytes

readMode Vilnt32 0 = AqT3ReadStandard = standard readout mode
1 = AqT3ReadContinuous = TOF mode - TC890 only

reserved3 Vilnt32 Reserved for future use

reserved2 Vilnt32 Reserved for future use

reserved]l Vilnt32 Reserved for future use

Data Descriptor AqT3DataDescriptor

Name Type Description
dataPtr Vilnt32 Not relevant in this context and should be ignored
nbrSamples Vilnt32 number of samples returned
sampleSize Vilnt32 Size in bytes of the time data format in use
sampleType Vilnt32 type of the returned samples, see AqT3SampleType
flags Vilnt32 For TC890 ONLY
Bit 0: Internal memory overflow flag
Bit 1: External memory overflow flag
reserved3 Vilnt32 Reserved for future use
reserved2 Vilnt32 Reserved for future use
reserved] Vilnt32 Reserved for future use

Programmer’s Reference Manual

Page 216 of 222

Discussion

All structures used in this function can be found in the header files AcqirisT3Interface.h and
AcqirisDataTypes.h.

The type of the dataArray is determined from the AqT3ReadParameters struct entry dataType.

= dataType = 4 is used for raw data. For example, the 32-bit natural readout of the TC890 TOF multihit
mode is of AqT3SampleType AqT3Struct50ps6¢ch and has the following format:

31 28-30 0-27
Overflow Channel Data

where
Channel = 1...6 denotes the physical channels. The Data bits give the time value in units of 50 ps

0 is for the start of the next event. In this case the Data bits give the count of the common start
within the current acquisition

7 is for marker data with Data

=0 : Switch from Auxiliary input A

=1 : Switch marker: Common channel Event count.
= 2 : Switch marker: Memory Full.

=16 : Marker: Auxiliary input B marker.

= dataType = 2 is used for integer format time results. These results are always in multiples of the
granularity given by the AqT3SampleType value of AQT3Count50psInt32.

The dataSizeInBytes must fulfill the storage requirement for the raw data read from the device. This means
that for the TC840

single hit mode - 104 bytes
multi-start mode - 52KB = 53248 bytes

and for the TC890 you must configure it as a function of the number of expected values, including the start,
and markers counting 4 bytes for each. The worst case is the full bank of SMB = 8388608.

Data beyond the point implied by the nbrSamples returned value must be ignored.

The TC890 memory overflow flags show whether that condition happened since the previous call of the
readData routine.

The allocated data array must be 32-bit aligned. If it is not an error status will be generated.

Programmer’s Reference Manual Page 217 of 222

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_readDatalnt32(ViSession instrumentliD,
Vilnt32 channel, AqT3ReadParameters* readPar,

Vilnt32* dataArrayP, AqT3DataDescriptor* dataDesc);

LabVIEW Representation

Use the polymorphic Acqiris Tx.lvlib: (or Aqg Tx) Read Data.vi

MATLAB MEX Representation

[status dataDesc dataArray] = AqT3_readData(instrumentlD, channel, readPar)

Programmer’s Reference Manual Page 218 of 222

2.3.121 AcqrsT3 _readDataReal64

Purpose

Returns all Time-to-Digital Converter information. The sample data is returned in a model dependent form

and as specified in the AqQT3ReadParameters structure.

Parameters
Input
Name Type Description
instrumentID | ViSession Instrument identifier
channel Vilnt32 Reserved for future use (must be set to 0)
readPar AqgT3ReadParameters Requested parameters for the acquired data.
QOutput
Name Type Description
dataArrayP ViReal64* Data array pointer
dataDesc AqgT3DataDescriptor Data descriptor structure needed for interpretation
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Read Parameters in AqT3ReadParameters

Name Type Description

dataArray ViAddr Unused - set to NULL .

dataSizelnBytes ViUInt32 Number of bytes in the user-allocated dataArray. Used
for verification / protection. See discussion for required
size.

nbrSamples Vilnt32 Number of samples requested. For the TC890 it is used
for the maximum number of 4-byte structures to be
returned by the read (see dataType = 4 discussion
below)

dataType Vilnt32 Type representation of the data
3 = ReadReal64 = 64-bit (double) = 8 bytes

readMode Vilnt32 0 = AqT3ReadStandard = standard readout mode

reserved3 Vilnt32 Reserved for future use

reserved2 Vilnt32 Reserved for future use

reserved] Vilnt32 Reserved for future use

Data Descriptor AqT3DataDescriptor

Name Type Description
dataPtr ViAddr Not relevant in this context and should be ignored
nbrSamples Vilnt32 number of samples returned
sampleSize Vilnt32 Size in bytes of the time data format in use
sampleType Vilnt32 type of the returned samples, see AqT3SampleType
flags Vilnt32 Unused
reserved3 Vilnt32 Reserved for future use
reserved2 Vilnt32 Reserved for future use
reserved]l Vilnt32 Reserved for future use

Programmer’s Reference Manual

Page 219 of 222

A\

Discussion

All structures used in this function can be found in the header files AcqirisT3Interface.h and
AcqirisDataTypes.h.

The type of the dataArray is determined from the AqQT3ReadParameters struct entry dataType.
= dataType = 3 is used for double floating-point format time results. These results are always in seconds.

The dataSizeInBytes must fulfill the storage requirement for the raw data read from the device. This means
that for the TC840/TC842

single hit mode - 104 bytes for TC840, 416 bytes for TC842
multi-start mode - 52KB = 53248 bytes

and for the TC890 you must configure it as a function of the number of expected values, including the start,
and markers counting 4 bytes for each. The worst case is the full bank of 8MB = 8388608.

Data beyond the point implied by the nbrSamples returned value must be ignored.

The TC890 memory overflow flags show whether that condition happened since the previous call of the
readData routine.

The allocated data array must be 32-bit aligned. If it is not an error status will be generated.

LabWindowsCVI1/Visual C++ Representation

ViStatus status = AcqrsT3_readDataReal64(ViSession instrumentlD,
Vilnt32 channel, AqT3ReadParameters* readPar,

ViReal64* dataArrayP, AqT3DataDescriptor* dataDesc);

LabVIEW Representation

Use the polymorphic Acqiris Tx.lvlib: (or Ag Tx) Read Data.vi

MATLAB MEX Representation

[status dataDesc dataArray] = AgT3_readData(instrumentlD, channel, readPar)

Programmer’s Reference Manual Page 220 of 222

2.3.122 AcqrsT3_stopAcquisition

Purpose

Stops the acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
Return Value
Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will stop the acquisition and not return until this has been accomplished.

LabWindowsCVI1/Visual C++ Representation

ViStatus status

AcqrsT3_stopAcquisition(ViSession instrumentliD);

LabVIEW Representation

Acqiris Tx.lvlib: (or Aq Tx) Stop Acquisition.vi

Instrument ID

Error in (o error)

ATy

Ztop

MATLAB MEX Representation

errar ouk

dup Instrument 10

[status] = AQT3_stopAcquisition(instrumentlD)

Programmer’s Reference Manual

Page 221 of 222

2.3.123 AcqrsT3_waitForEndOfAcquisition

Purpose

Waits for the end of acquisition.

Parameters
Input
Name Type Description
instrumentID ViSession Instrument identifier
timeout Vilnt32 Timeout in milliseconds

Return Value

Name

Type Description

status

ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will return only after the acquisition has terminated or when the requested timeout has
elapsed, whichever comes first. For protection, the timeout is clipped to a maximum value of 10 seconds. If
a larger timeout is needed, call this function repeatedly. While waiting for the acquisition to terminate, the
calling thread is put into 'idle', permitting other threads or processes to fully use the CPU.

LabWindowsCVI1/Visual C++ Representation

ViStatus status =

LabVIEW Representation

AcqrsT3 _wailtForEndOfAcquisition (ViSession instrumentlD,

Vilnt32 timeout);

Acqiris Tx.lvlib: (or Ag Tx) Wait For End OF Acquisition.vi

CE

Instrument ID
Timeouk —

z

Error in (no error) ==

dup Instrument ID

error ouk

MATLAB MEX Representation

[status] = AQT3_waitForEndOfAcquisition(instrumentlD, timeOut)

Programmer’s Reference Manual

Page 222 of 222

	1. Introduction
	1.1. Message to the User
	1.2. Using this Manual
	1.3. Conventions Used in This Manual
	1.4. Warning Regarding Medical Use
	1.5. Warranty
	1.6. Warranty and Repair Return Procedure, Assistance and Support
	1.7. System Requirements

	2. Device Driver Function Reference
	2.1. Status values and Error codes
	2.2. API Function classification
	2.3. API Function descriptions
	2.3.1 Acqrs_calibrate
	2.3.2 Acqrs_calibrateCancel
	2.3.3 Acqrs_calibrateEx
	2.3.4 Acqrs_calLoad
	2.3.5 Acqrs_calRequired
	2.3.6 Acqrs_calSave
	2.3.7 Acqrs_close
	2.3.8 Acqrs_closeAll
	2.3.9 Acqrs_configLogicDevice
	2.3.10 Acqrs_errorMessage
	2.3.11 Acqrs_getDevType
	2.3.12 Acqrs_getDevTypeByIndex
	2.3.13 Acqrs_getInstrumentData
	2.3.14 Acqrs_getInstrumentInfo
	2.3.15 Acqrs_getNbrChannels
	2.3.16 Acqrs_getNbrInstruments
	2.3.17 Acqrs_getVersion
	2.3.18 Acqrs_init
	2.3.19 Acqrs_InitWithOptions
	2.3.20 Acqrs_logicDeviceIO
	2.3.21 Acqrs_powerSystem
	2.3.22 Acqrs_reset
	2.3.23 Acqrs_resetMemory
	2.3.24 Acqrs_resumeControl
	2.3.25 Acqrs_setAttributeString
	2.3.26 Acqrs_setLEDColor
	2.3.27 Acqrs_setSimulationOptions
	2.3.28 Acqrs_suspendControl
	2.3.29 AcqrsD1_accumulateData
	2.3.30 AcqrsD1_acqDone
	2.3.31 AcqrsD1_acquire
	2.3.32 AcqrsD1_acquireEx
	2.3.33 AcqrsD1_averagedData
	2.3.34 AcqrsD1_bestNominalSamples
	2.3.35 AcqrsD1_bestSampInterval
	2.3.36 AcqrsD1_calibrate (DEPRECATED)
	2.3.37 AcqrsD1_calibrateEx (DEPRECATED)
	2.3.38 AcqrsD1_close (DEPRECATED)
	2.3.39 AcqrsD1_closeAll (DEPRECATED)
	2.3.40 AcqrsD1_configAvgConfig
	2.3.41 AcqrsD1_configAvgConfigInt32
	2.3.42 AcqrsD1_configAvgConfigReal64
	2.3.43 AcqrsD1_configChannelCombination
	2.3.44 AcqrsD1_configControlIO
	2.3.45 AcqrsD1_configExtClock
	2.3.46 AcqrsD1_configFCounter
	2.3.47 AcqrsD1_configHorizontal
	2.3.48 AcqrsD1_configLogicDevice (DEPRECATED)
	2.3.49 AcqrsD1_configMemory
	2.3.50 AcqrsD1_configMemoryEx
	2.3.51 AcqrsD1_configMode
	2.3.52 AcqrsD1_configMultiInput
	2.3.53 AcqrsD1_configSetupArray
	2.3.54 AcqrsD1_configTrigClass
	2.3.55 AcqrsD1_configTrigSource
	2.3.56 AcqrsD1_configTrigTV
	2.3.57 AcqrsD1_configVertical
	2.3.58 AcqrsD1_errorMessage
	2.3.59 AcqrsD1_errorMessageEx
	2.3.60 AcqrsD1_forceTrig
	2.3.61 AcqrsD1_forceTrigEx
	2.3.62 AcqrsD1_freeBank
	2.3.63 AcqrsD1_getAvgConfig
	2.3.64 AcqrsD1_getAvgConfigInt32
	2.3.65 AcqrsD1_getAvgConfigReal64
	2.3.66 AcqrsD1_getChannelCombination
	2.3.67 AcqrsD1_getControlIO
	2.3.68 AcqrsD1_getExtClock
	2.3.69 AcqrsD1_getFCounter
	2.3.70 AcqrsD1_getHorizontal
	2.3.71 AcqrsD1_getInstrumentData (DEPRECATED)
	2.3.72 AcqrsD1_getInstrumentInfo (DEPRECATED)
	2.3.73 AcqrsD1_getMemory
	2.3.74 AcqrsD1_getMemoryEx
	2.3.75 AcqrsD1_getMode
	2.3.76 AcqrsD1_getMultiInput
	2.3.77 AcqrsD1_getNbrChannels (DEPRECATED)
	2.3.78 AcqrsD1_getNbrPhysicalInstruments (DEPRECATED)
	2.3.79 AcqrsD1_getSetupArray
	2.3.80 AcqrsD1_getTrigClass
	2.3.81 AcqrsD1_getTrigSource
	2.3.82 AcqrsD1_getTrigTV
	2.3.83 AcqrsD1_getVersion (DEPRECATED)
	2.3.84 AcqrsD1_getVertical
	2.3.85 AcqrsD1_init (DEPRECATED)
	2.3.86 AcqrsD1_InitWithOptions (DEPRECATED)
	2.3.87 AcqrsD1_logicDeviceIO (DEPRECATED)
	2.3.88 AcqrsD1_multiInstrAutoDefine
	2.3.89 AcqrsD1_multiInstrDefine
	2.3.90 AcqrsD1_multiInstrUndefineAll
	2.3.91 AcqrsD1_procDone
	2.3.92 AcqrsD1_processData
	2.3.93 AcqrsD1_readData
	2.3.94 AcqrsD1_readFCounter
	2.3.95 AcqrsD1_reportNbrAcquiredSegments
	2.3.96 AcqrsD1_reset (DEPRECATED)
	2.3.97 AcqrsD1_resetDigitizerMemory
	2.3.98 AcqrsD1_restoreInternalRegisters
	2.3.99 AcqrsD1_setAttributeString (DEPRECATED)
	2.3.100 AcqrsD1_setLEDColor (DEPRECATED)
	2.3.101 AcqrsD1_setSimulationOptions (DEPRECATED)
	2.3.102 AcqrsD1_stopAcquisition
	2.3.103 AcqrsD1_stopProcessing
	2.3.104 AcqrsD1_waitForEndOfAcquisition
	2.3.105 AcqrsD1_waitForEndOfProcessing
	2.3.106 AcqrsT3_acqDone
	2.3.107 AcqrsT3_acquire
	2.3.108 AcqrsT3_configAcqConditions
	2.3.109 AcqrsT3_configChannel
	2.3.110 AcqrsT3_configControlIO
	2.3.111 AcqrsT3_configMemorySwitch
	2.3.112 AcqrsT3_configMode
	2.3.113 AcqrsT3_forceTrig
	2.3.114 AcqrsT3_getAcqConditions
	2.3.115 AcqrsT3_getChannel
	2.3.116 AcqrsT3_getControlIO
	2.3.117 AcqrsT3_getMemorySwitch
	2.3.118 AcqrsT3_getMode
	2.3.119 AcqrsT3_readData
	2.3.120 AcqrsT3_readDataInt32
	2.3.121 AcqrsT3_readDataReal64
	2.3.122 AcqrsT3_stopAcquisition
	2.3.123 AcqrsT3_waitForEndOfAcquisition

